

An Ewellix company

Linear motion components Product catalogue

Origin

We, ABBA Linear Tech Co., LTD., established in 1999, was the first professional Linear Guide manufacturer in Taiwan putting four-row linear guides with self-lubricant patent into mass production. We are always focus on product innovation development and design. Since possessing critical technology of industries, global market share of ABBA increases year by year. ABBA became world-renowned Linear Motion Brand, Both technology and quality are 2003 always at the forefront of the industry. Awarded 2003

2015 Plant

Expansion

2007

Acquired by the SKF Group and being part of the SKF Motion Technologies business area

2002

Awarded 2002 and 2003 Taiwan Excellence Award

Rising Star Award

1999

ABBA was established

Heritage

In 2007, ABBA joined SKF group and be part of the SKF Motion Technologies business area. We showed the huge scale of World Factory by being linked with other global professional Linear Motion Factories. For achieving maximum capability, we continue expanding processing equipment to make sure that we are able to supply global demand.

Taiwan Excellence

Award

ISO 9001:2008

SKF Motion Technologies changes name 2019 into Ewellix

SKF Motion Technologies are acquired by Triton

2018

THE REPORT OF THE PROPERTY OF

EWELLIX

An Ewellix company

Vision

MAKERS IN MOTION

Due to professional manufacturing technology of Linear Guide for 20 years, stable products quality and excellent manufacturing environment, ABBA continues to develop steadily. SKF Motion Technologies department which ABBA was belonged to was divided from the SKF Group into an independent enterprise and renamed as "Ewellix" on 2019 Oct.7th. We will keep going on the right track with " Commitment, Agility, and Collaboration" according to Ewellix's core value. And continuing the strategies of Brand management, Channels development and Diverse industrial application. When we bring Ewellix Group power into full play and integrate global business resources, we may create infinite possibility in Linear Guides and Linear Motion area. Together leading the Linear Motion industry to a New Era.

Award of Creative Innovation Prize

Patents

Certificates of Rising Star Award

National Business Start-up Award

Contents

1 Standard Linear Guide

1.1	Characteristics		
1.2	Construction		
1.3	Advantage		
1.4	Interchangeability Notice		
1.5	Accuracy Selection		
1.6	Accuracy	y Standard	4
	1.6.1	Definitions	5
1.7	Preload.		6
1.8	Suggest	ion in Assembly	8
1.9	Configur	ation of Linear Guide	9
1.10	Fixing m	ethod of Linear Guide	10
1.11	Installati	on of Linear Guides	10
	1.11.1	Installation with vibration and stirke in the machine with	ı
		high rigidity and high accurcy required	10
	1.11.2	Installation of rail without positioning bolts	12
	1.11.3	Installation of rails without lateral positioning surfaces.	14
	1.11.4	Recommended torque for mounting bolts of rail	15
	1.11.5	Tolerance of mounting surface	15
1.12	Dimensi	on of blind hole	16
1.13	Indicatio	n and assembling of Linear Guide	16
	1.13.1	Jointed rail	16
	1.13.2	Definition of the end distance (G value)	17
1.14	Definitio	n of load rating and coefficient	17
	1.14.1	Definition of load rating	17
	1.14.2	Static safety factor fs	17
	1.14.3	Contact factor fc	18
	1.14.4	Hardness factor fh	18
	1.14.5	Temperature factor ft	18
	1.14.6	Load factor fw	19
	1.14.7	Minimum stroke factor fs	19
1.15	Life calc	ulation formula	19
1.16	Calculati	on of workload	20
1.17	Calculati	on of equivalent load	23
1.18	Calculati	on of average load with variable load	23
1.19	Friction		25
1.20	Lubricati	on	26
	1.20.1	Factory pre-lubrication	26
	1.20.2	Grease re-lubrication	26
	1.20.3	Oil re-lubrication	27
1.21	Grease r	nipple(standard)	28
1.22	Accesso	ries	29
	1.22.1	Standard seal	
	1.22.2	Low friction shield	29
	1.22.3	Scraper plate	29
	1.22.4	U type metal frame	
1.23	BR Lubr	ication reservoir kit	30
	1.23.1	Characteristics	30
	1.23.2	Construction	30
	1.23.3	Applicable scope	
	1.23.4	Installation size	31

1.24	Product	overview	32
1.25	Rail drill	ing method	33
1.26	Mainten	ance and usage of Linear Guide	
1.27	Ordering	g key of System	35
1.28	Ordering	g key of Rail	36
1.29	Ordering	g key of Block	37
1.30	Dimensi	on of Linear Guide	38
	1.30.1	BRC-R0/LR, BRD-R0/LR	
	1.30.2	BRC-A0/LA, BRD-A0/LA	40
	1.30.3	BRC-SU/U0, BRD-SU/U0	42

2 Ball Caged Linear Guide

2.1	Charact	eristics	
2.2	Constru	ction	
2.3	Feature		47
2.4	Product	overview	
2.5	Ordering	g key of System	
2.6	Ordering key of Rail		
2.7	Ordering key of Block51		
2.8	Dimension of Linear Guide		
	2.8.1	BCC-A0/LA	
	2.8.2	BCC-R0/LR	

3 Miniature Linear Guide

Characteristics		
Product specification		
Construction		
Advanta	ge	60
Accuracy	y Standard	60
Preload.		60
Suggesti	ion in Assembly	61
3.7.1	Assembly design	61
3.7.2	Recommended torque for mounting bolts of rail	61
3.7.3	Tolerance of mounting surface	61
Running resistance		62
Lubricati	on	62
3.9.1	Factory pre-lubrication	62
3.9.2	Grease re-lubrication	62
Product	overview	63
3.10.1	BMHC/BMHR Standard type	63
3.10.1	BMWC/BMWR Wide type	63
Ordering	y key of System	64
Ordering	y key of Rail	65
Ordering key of Block		
Dimensi	on of linear guide	66
3.14.1	BMHC-U0/LU	66
3.14.2	BMWC-U0/LU	68
	Product Construct Advanta Accuract Preload. Suggest 3.7.1 3.7.2 3.7.3 Running Lubricati 3.9.1 3.9.2 Product 3.9.2 Product 3.10.1 Ordering Ordering Dimensi 3.14.1	Product specification

4 Cam Roller Linear Guide

5	Round Shaft Linear Guide
4.3	CRE Economic type76
4.2	CRD Dust-proof type74
4.1	CRC Standard type72

5.1	RLG Standard type	80
5.2	RLR High impact type	

6 Ball Screw

6.1	Technol	logical description of Ball Screws	86
	6.1.1	Lead / Travel Accuracy	86
	6.1.2	Axial Play	88
	6.1.3	Definition of mounting accuracy and tolerances on s	crew 88
	6.1.4	Preload torque	89
6.2	Screw s	haft design	91
	6.2.1	Mounting methods	91
	6.2.2	Buckling load	93
	6.2.3	Allowable rotation	94
6.3	Nut des	ign	95
	6.3.1	Selection of nut	95
	6.3.2	Axial Rigidity	97
6.4	Preload	and effect	100
	6.4.1	Ball Screw's preload and effect	100
	6.4.2	Positioning accuracy	101
6.5	Life		102
	6.5.1	Life of the Ball Screw	102
	6.5.2	Fatigue life	102
	6.5.3	Material and Hardness	104
	6.5.4	Lubrication	104
	6.5.5	Dustproof	104
	6.5.6	Key points for Ball Screws selection and calculation.	105
6.6	Driving	torque	109
6.7	Selectin	g correct type Ball Screw	110
6.8	Ordering	g key	111
6.9	Dimens	ion of Ball Screw	112
	6.9.1	FSU (DIN69051)	112
	6.9.2	FDU (DIN69051)	113
	6.9.3	FSI	114
	6.9.4	FDI	115
	6.9.5	FSC	116
	6.9.6	FSS	117
	6.9.7	FSE	118
	6.9.8	FSB	119
	6.9.9	FSK	120
	6.9.10	FPA	121
	6.9.11	RSK(without wipers)	122
	6.9.12	RSY	123
	6.9.13	RSU	124
	6.9.14	RSH	125

7 Support Unit

7.1	Recommended Shaft End Shape(Fixed side) - BK.FK.EK	128
7.2	Recommended Shaft End Shape(Floated side) - FF.EF.BF	
7.3	FK (Fixed Side)	130
7.4	FF (Floated side)	131
7.5	BK (Fixed Side)	132
7.6	EK (Fixed Side)	133
7.7	BF (Floated side)	134
7.8	EF (Floated side)	135
8 8	Self-lubricated Linear Bearing	
8.1	Characteristics	
8.2	Structure	139
8.3	Size selection	139
8.4	Life calculation	140
8.5	Cantilevered loads	141
8.6	Open type bearing mounting configurations	142
8.7	Round profile type	144
8.8	SMT Thin profile type	146
8.9	SMK Square flange type	
8.10	SMF Round flange type	148
8.11	SMFD Center flange type	149
8.12	SMK-L Long square flange type	150
8.13	SMF-L Long round flange type	151

Appendix 1 BR Series Model Code Transition

Appendix 2

Examples of Ball Srews accuracy classes for different uses

Standard

Ball Caged

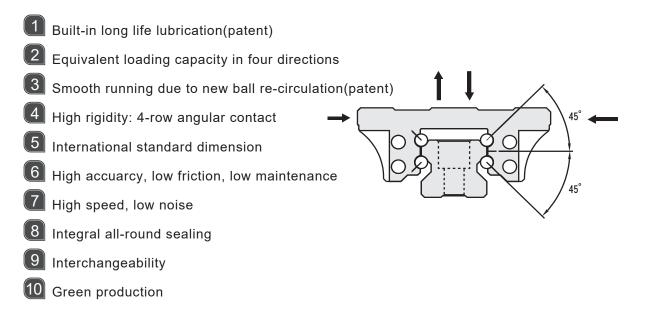
Miniature

Cam Roller

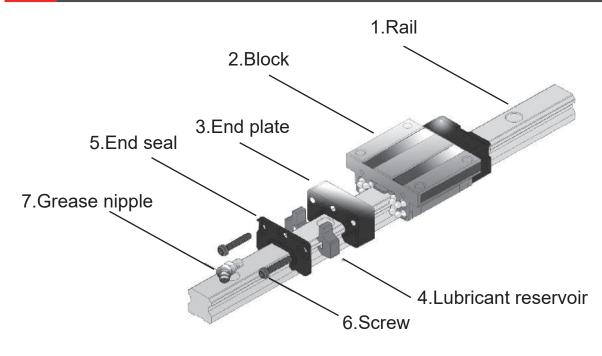
Round Shaft

Ball Screw

Support Unit

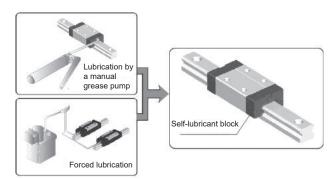

Self-Iubricated Linear Bearing

Standard Linear Guide

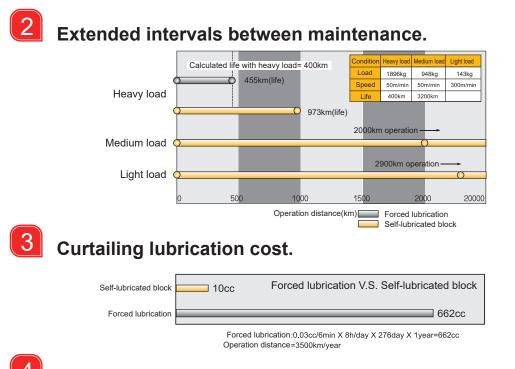

C

C

1.1 Characteristics

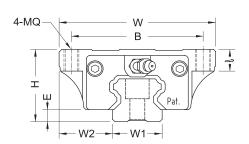


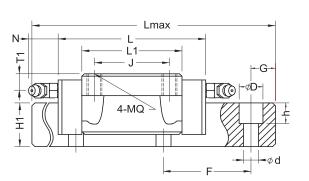
1.2 Construction



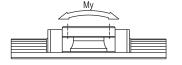
1.3 Advantage

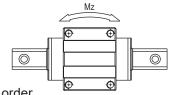
Maintence free - No need for frequent periodic lubrication or automatic lubrication systems.




4 No oil leakage concern, easy for cleaning.

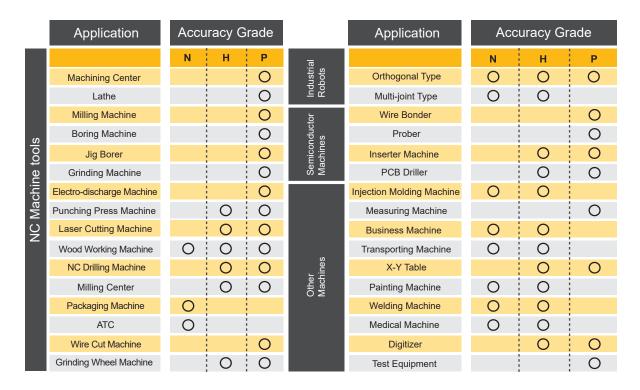
1.4 / Interchangeability Notice




- 1 Check the mounting height (H)
- Check the mounting width (W2)
- Check the block length (L)
- 4 Check the block's body size (L1)
- 5 Check the hole diameter and pitches on the block (BXJ)
- 6 Check the rail width (W1)
- Check the pitch of the rail (F)
- 8 Check the hole diameter and rail size (dxDxh)

9 When a specific length is required, please advise the (G) values in your order.

Ball Screw


Support Unit

Self-Iubricated Linear Bearing

1.5 Accuracy Selection

We have three grades for your selection: Normal(N)/ High(H)/ Precision(P)

The accuracy of linear guides can be divided into three types: Running parallelism, Tolerance, and Difference of heights and widths. (As several blocks are used on one rail, or as several shafts are installed on the same surface, the Difference of heights and widths of each model are specified.)

1.6 Accuracy Standard

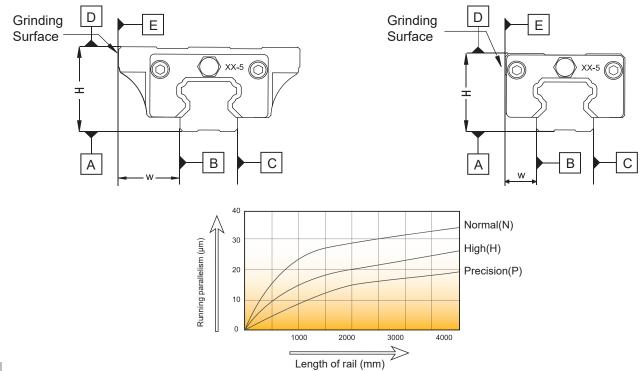


Fig.1.6.1 BR rail length and running parallelism

Unit : mm

	GRADE			
ITEM	Normal (N)	High (H)	Precision (P)	
Tolerance of height (H)	± 0.1	± 0.04	0-0.04	
Tolerance of width (W)	± 0.1	± 0.04	0-0.04	
Difference of heights ($\triangle H$)	0.03	0.02	0.01	
Difference of widths ($ riangle W$)	0.03	0.02	0.01	
Running parallelism between the block surface D and rail surface A	∆C Re	fer to Fig.1.6.1		
Running parallelism between the block surfaceEand rail surfaceBandC	∆D Re	fer to Fig.1.6.1		

1.6.1 Definitions

1 Difference of heights (riangle H)

The difference is obtained by measuring the different blocks on the same rail position in terms of the difference between the maximum and minimum heights (H).

2 Difference of widths (riangleW)

The difference is obtained by measuring the different blocks on the same rail position in terms of the difference between the maximum and minimum widths (W).

3 Running parallelism

This is refer to the running parallelism tolerance between the two reference planes of rail and block when the block is moved along the entire rail length, the rail being screwed to the reference plane.

Standard

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Self-Iubricated Linear Bearing

5

1.7 / Preload

1 Radial clearance

The radial clearance of the linear guide means the radial movement of the central portion of the block when the linear guide is fixed, moving the block up and down lightly at the center of its length. There are five types of radial clearances: ZF (Clearance), Z0 (No Preload), Z1 (Light preload), Z2 (Medium preload), and Z3 (Heavy preload). The radial clearance of the linear block has a significant impact on the running accuracy, load resistance and rigidity, so it is important to choose the clearance appropriately according to the application. In general, considering the impact of vibration caused by reciprocating motion, choosing a negative clearance will bring good effects on service life and accuracy.

2 Preload

The purpose of tpreload is to increase the rigidity of the block and eliminate the internal load applied to the steel ball in advance, such as clearance. The codes Z1, Z2, and Z3 of the ABBA linear guide indicate that the clearance value is negative after the preload is applied. The method of adjusting the preload is to change the size of the steel ball. Generally, the work of adjusting the preload must be completed at the original factory. If distributors or customers would like to adjust the preload by themselves, please contact the factory for related technical information.

Choice of radial clearance and preload						
	ZF (Clearance)	Z0 (No Preload)	Z1 (Light preload)	Z2 (Medium preload)	Z3 (Heavy preload)	
Conditions of Use	Nearly no precision is required and sliding resistance is very small	The load direction is constant, the vibration and impact are small, and the two axes are used side by side. The accuracy is not required, but small sliding resistance is required.	Cantilever load or moment acts, one axis is used, and high accuracy is required during light load	High rigidity is required, with vibration or impact, heavy cutting machine tools etc.	With highest rigidity requirements and extreme impact resistance	
Application	Conveyor	Flame cutting machine Automatic packaging machine Welding machine Robotic arm Injection molding machine	Grinding table feed shaft Automatic coating machine High-speed material supply- device PCB punching machine Precision XY Stage	Machining Center CNC lathe Grinding wheel feed shaft Milling machine Boring machine	Steel plate cutting machine Punch	

Consider load and life during preload

When using preload to linear guide, it is necessary to consider the preload load for life calculation due to the internal load in the block beforehand.

4 Rigidity

When linear guide is borne to a load, steel balls, blocks, or rails are elastically deformed within the allowable load range. At this time, the ratio of the load to the displacement is the rigidity value. With the increase of the preload amount, the rigidity of the linear guide also increases. For the 4-directions equivalent loading capacity type of ABBA, the effect of the preload can keep the external load until increasing up to about 2.8 times the preload.

Table 1.7.1 Preload class and preload force

Item Class	Code	Preload force
Clearance	ZF	0
No preload	Z0	0
Light preload	Z1	0~0.02 C
Medium preload	Z2	0.02C~0.05 C
Heavy preload	Z3	0.05C~0.07 C

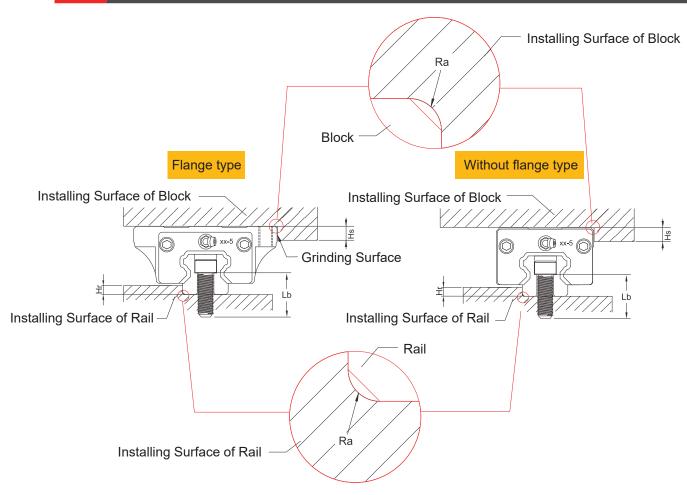
C: Basic dynamic load rating

Table 1.7.2 Relationship between optional precision and preload of linear guide

				Unit : µm
	Non-interchangeable type			
Accuracy	Р	Н	N	Ν
	-	-	ZF	ZF
	Z0	Z0	Z0	Z0
Preload	Z1	Z1	Z1	Z1
	Z2	Z2	Z2	-
	Z3	Z3	Z3	-

Note:

The interchangeable type is packaged for rail and block separately, which can be assembled by the customer with guaranteed accuracy. Non-interchangeable rail and block have been assembled and packed together. After receiving the goods, users cannot disassemble, exchange, or change the direction of the blocks, otherwise the product may lose its original accuracy.
 Round Shaft
 Cam Roller
 Miniature
 Ball Caged
 Standard


 Linear Guide

Ball Screw

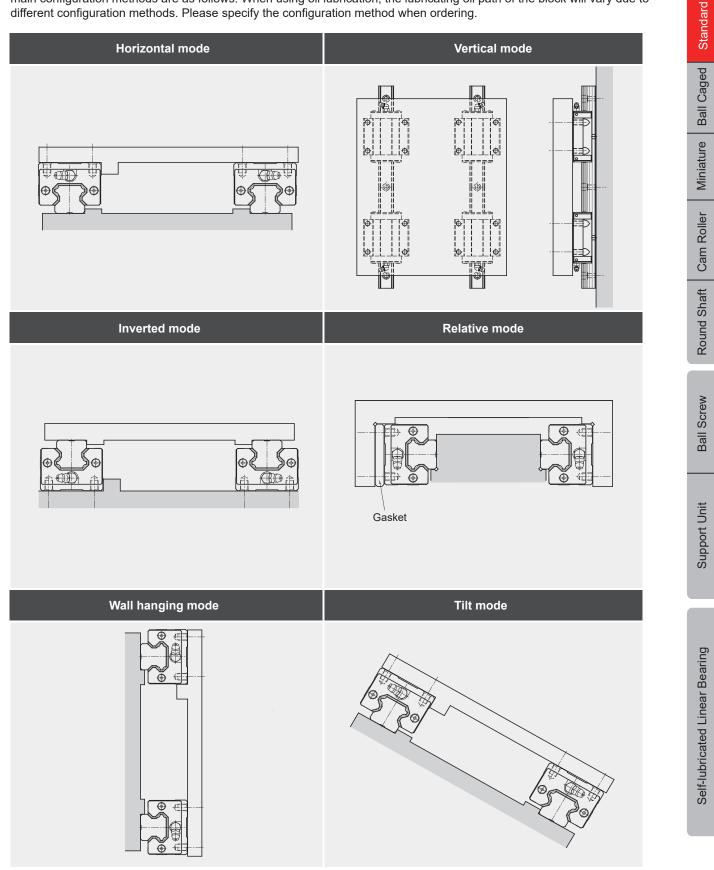
Support Unit

Self-Iubricated Linear Bearing

1.8 Suggestion in Assembly

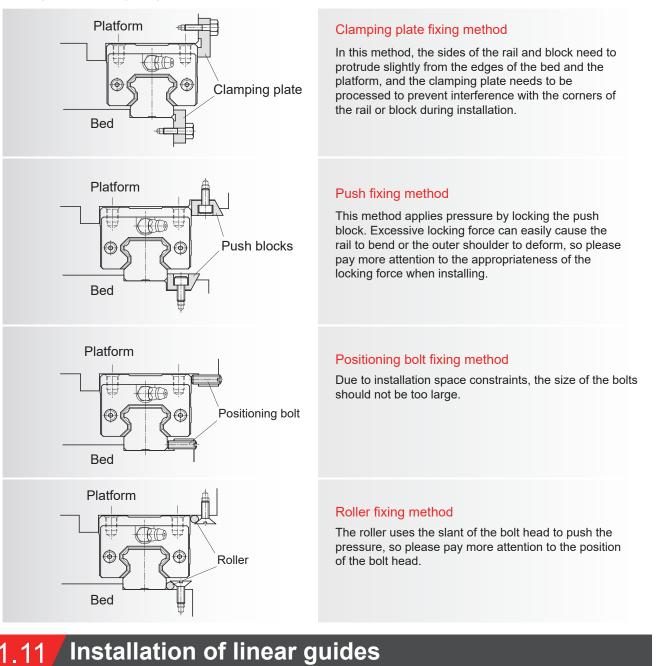
	Init	mm
0	'I II L	

	Maximum Fillet of rail	Maximum	ı shoulder Hr) of rail	Maximum shoulder height (Hs) of block		Rail Bolt length	Recommended size of block lock bolt		
Item	(Ra)	Ŭ,	,	Ű,	, 	suggestion(L _b)	Locked fro		Locked from below
	<u> </u>	Min.	Max.	Min.	Max.		Flange type	Without flange type	Flange type
BR-15	0.6	2.5	3.5	3	4	M4x20	M5	M4	M4
BR-20	0.6	2.5	4	4	5	M5x25	M6	M5	M5
BR-25	0.8	3	5	4	5	M6x30	M8	M6	M6
BR-30	0.8	3	5	4	6	M8x30	M10	M8	M8
BR-35	0.8	3.5	6	5.5	6	M8x35	M10	M8	M8
BR-45	0.8	4.5	8	6	8	M12x45	M12	M10	M10

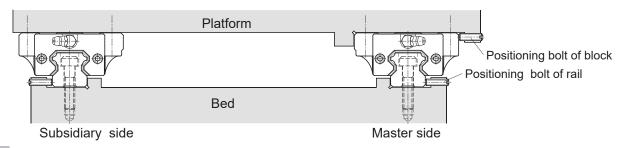

Linear Guide

Ball Screw

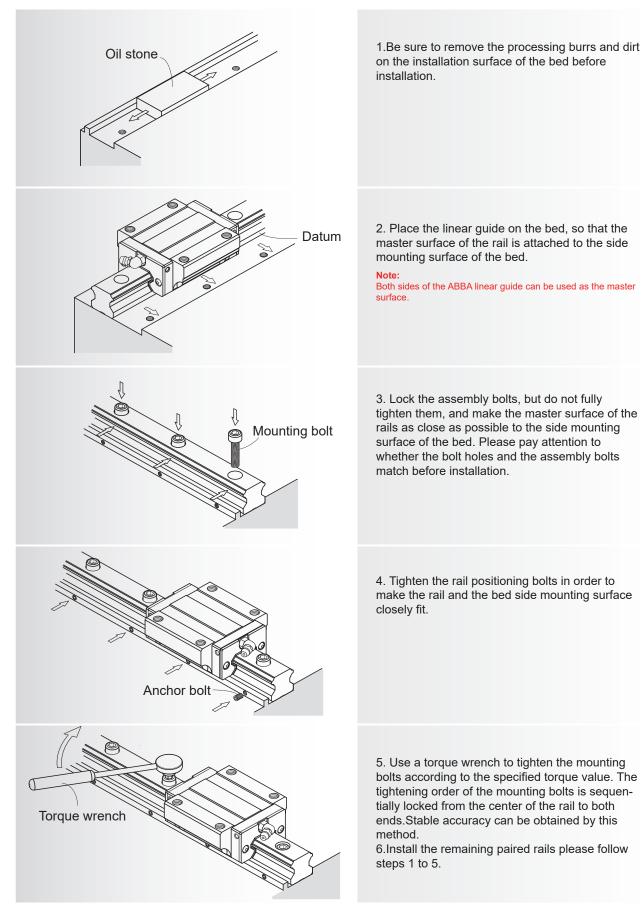
Other components


1.9 Configuration of Linear Guide

The linear guide can be configured differently according to the demand of the machine structure and the load direction. The main configuration methods are as follows. When using oil lubrication, the lubricating oil path of the block will vary due to different configuration methods. Please specify the configuration method when ordering.


1.10 Fixing method of Linear Guide

When there is vibration or impact force in the machine, the rail and block are likely to deviate from the original fixed position, which affects the running accuracy and service life. To avoid this situation, it is recommended to fix the rail and block according to the following fixing methods.


1.11.1

Installation with vibration and stirke in the machine with high rigidity and high accurcy required

1 Installation of rail

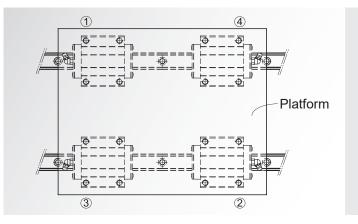
Linear Guide

Standard

Ball Caged

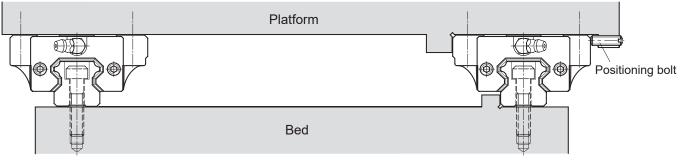
Miniature

Cam Roller

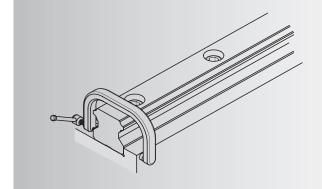

Round Shaft

Ball Screw

Support Unit


Self-lubricated Linear Bearing

2 Installation of block



 Install the platform on the block and lock the block mounting bolts, but not fully tightened.
 Use the positioning bolts to lock the master surface of the block and the lateral mounting surface of the platform to position the platform.
 Tighten the block mounting bolts in the order of the diagonal of the block from (1) to (4).

1.11.2 Installation of rail without positioning bolts

Subsidiary side

Master side

Lock the assembly bolts, but do not fully tighten them. Use a vise to press the rail master surface against the bed's lateral mounting surface, and then use a torque wrench to tighten the rail mouting bolts in order according to the specified torque value.

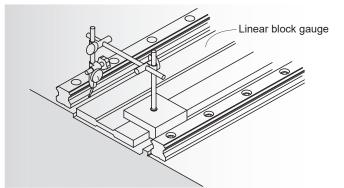
Installation of master side rail

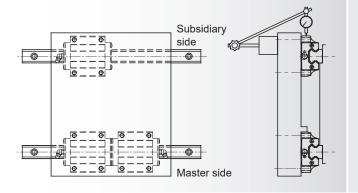
Standard

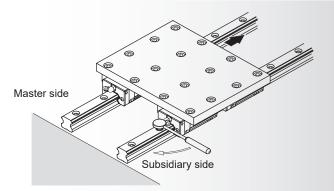
Ball Caged

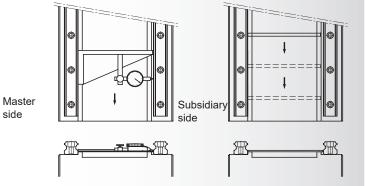
Miniature

Cam Roller


Round Shaft


Ball Screw


Support Unit


Linear Guide

Installation of subsidiary side rail

Linear block gauge method

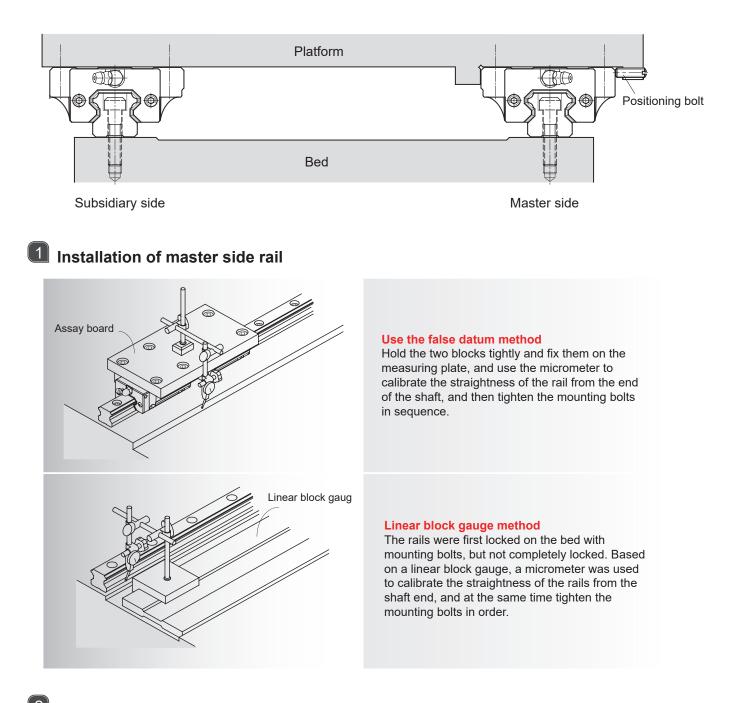
Place the linear block gauge between the two rails, use the micrometer to adjust it to the reference side of rail parallel to the reference surface, and then use the linear block gauge as a reference to adjust the straightness of the driven side of rail by using the micrometer. The rail mounting bolts are tightened in sequence from the end of shaft.

Moving platform method

The two blocks on the reference side are fixed and locked on the platform, and the rail on the driven side and one block are locked on the bed and platform individually, but not completely locked tightly. Fix the micrometer on the platform, and make its probe contact the side of the subsidiary side block, move the platform from the shaft end to calibrate the parallelism of the subsidiary side rail, and simultaneously tighten the mounting bolts in sequence.

Imitating the reference side rail method

The two blocks on the master side and one block on the subsidiary side are fixed and locked on the platform, while the rail on the subsidiary side and the other block are locked on the bed and the platform indivisually, but not completely locked tightly. Move the platform from the shaft end, adjust the parallelism of the subsidiary side rail according to the change of rolling resistance, and simultaneously tighten the mounting bolts in sequence.


Special tool installation method

Use a special tool to adjust the parallelism of the subsidiary side rail to the master surface according to the installation interval based on the lateral master surface of the master side rail, and simultaneously tighten the mounting bolts in sequence.

Self-Iubricated Linear Bearing

Installation of the block is the same as the previous example

1.11.3 Installation of rails without lateral positioning surfaces

2 Installation of subsidiary side rail and block is the same as the previous example

Standard

Ball Caged

Miniature

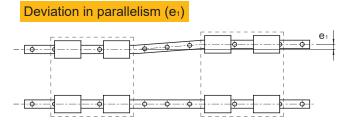
Cam Roller

Round Shaft

Ball Screw

Linear Guide

1.11.4 Recommended torque for mounting bolts of rail


When installing the rail, the locking force of the mounting bolts will affect the overall assembly accuracy. Therefore, the uniformity of the locking force is very important. It is recommended to tighten the mounting bolts with a torque wrench according to the torque values in the table on the right. Different mounting surfaces and bolt strengths have different bolt torque.

Bolt torq	ue value	Unit	: kgf*cm	
Delt stress att	Nominal	Mounting surface material		
Bolt strength	bolt model	Steel or cast iron	Aluminum	
	M4	25	19	
	M5	52	38	
	M6	88	65	
8.8	M8	220	157	
0.0	M10	440	314	
	M12	770	539	
	M14	1240	884	
	M16	2000	1426	
	M4	49	32	
	M5	95	63	
	M6	162	108	
12.9	M8	392	265	
12.9	M10	794	529	
	M12	1373	912	
	M14	2067	1378	
	M16	3333	2222	

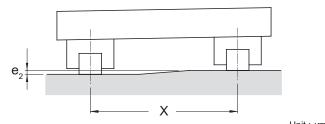
1.11.5 Permissible deviations of mounting

Due to the design of the 4-row X-shaped of the ABBA linear guide, it has excellent self-aligning ability. Even if the mounting surface is slightly skewed or deviation, it can still have smooth linear motion. The following is an explanation for the ABBA linear guide can correct the maximum error on the mounting surface.

However, for high-precision applications, the mounting surface must are with enough rigidity. And the permissible deviations of mounting are also need to be cut in half. Unit : µm

Height deviation in lateral direction(e_2)

Height deviation in lateral direction (e₂) can be calculated as follows:


$$e_2 = \frac{X \times f_{e_2}}{500}$$

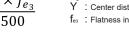
e₂: Height deviation in lateral direction (µm)

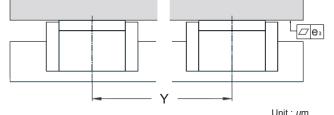
$$r_2 = \frac{\pi \times f_{e_2}}{500}$$

X : Center distance between two rails (mm)

: Height deviation in lateral direction coefficient fe2

					Unit : µm
Nominal Height deviation in lateral direction coefficient				ficient (fe2)	
size	Z3	Z2	Z1	Z0	ZF
15	90	100	160	250	270
20	90	100	160	250	270
25	90	100	160	250	270
30	100	110	170	260	280
35	100	110	170	260	280
45	100	110	170	260	280

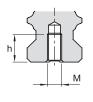

Nominal	Parallelism error tolerance for 2 axes(e ₁)				
size	Z3	Z2	Z1	Z0	ZF
15	10	13	18	25	35
20	12	18	20	25	35
25	15	20	22	30	42
30	20	27	30	40	55
35	22	30	35	50	68
45	25	35	40	60	85

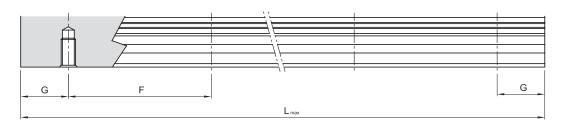

Flatness in top mounting plane(e₃)

Flatness in top mounting plane (e₃) can be calculated as follows:

$$e_3 = \frac{Y \times f_{e_3}}{500}$$

e₃ : Flatness in top mounting plane (µm) : Center distance between two blocks (mm)

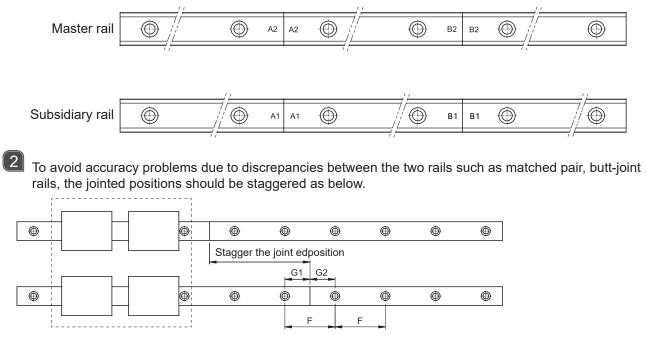



			0111. μ111	
Nominal	Flatness in top mounting plane deviation coefficient (f_{ex})			
size	Short block	Standard length block	Extended length block	
15	28	20	14	
20	28	20	14	
25	28	20	14	
30	33	24	17	
35	33	24	17	
45	33	24	17	

Support Unit

Self-lubricated Linear Bearing

1.12/ Dimension of blind hole


Nominal size	Screw size (M)	Screw Tread h (mm)
15	M5	8
20	M6	10
25	M6	12
30	M8	15
35	M8	17
45	M12	24

1.13 Indication and assembling of Linear Guide

1.13.1

Jointed rail

Jointed rails can be ordered if a rail length is required that exceeds maximum length of rail. Refer to below for markings.

Note:

ABBA gives priority to the accuracy and smoothness of the joint, so G1 + G2 = F, but it is not guaranteed that G1 = G2 = F/2.

Other components

Self-lubricated Linear Bearing

Ball Screw

Cam

Round Shaft

Ball Screw

Standard

Ball Caged

An Ewellix company

1.13.2 Definition of the end distance (G value)

The end distance (G value) of ABBA linear guide is selected as follows:

If customers have no special requirements, the calculation of standard end distance is as follows:

Total length of rail/Rail mounting hole distance = Integer * Hole distance + Remainder Remainder/2 = End distance

But if the distance from the end to the edge of the nearest mounting hole is less than 5mm, (Remainder+Rail mounting hole distance)/2 = End distance

Example 1 :

BRS25-A0C2Z0-00250ND0-00S00 type linear guide

Total length of rail= 260, Rail mounting hole distance= 60Total length of rail 260 / Rail mounting hole distance 60 = 4*60+20

End distance= 20/2= 10mm

But the hole diameter of the rail (D value) = 11mm, so the radius = 5.5mm From the end of the rail to the edge of the nearest mounting hole 10-5.5 = 4.5mm < 5mm,

Then increase its end distance to (20+60) / 2 = 40mm,

Meet the requirements after increasing the end distance

Example 2 :

BRS35-LRC2Z1-09800ND0-00S00 type linear guide Total length of rail= 9800, Rail mounting hole distance= 80 Total length of rail 9800 / Rail mounting hole distance 80 = 122*80+40 End distance= 40/2= 20mm But the hole diameter of the rail (D value) = 14mm, so the radius = 7mm From the end of the rail to the edge of the nearest mounting hole 20-7 = 13mm > 5mm, Meet the requirements

1.14 Definition of load rating and coefficient

1.14.1 Definition of load rating

Basic static load rating: C₀

We define the basic static load rating C_0 as a static load of constant magnitude acting in one direction under which the sum of the permanent deformations of rolling elements and raceway equals 0.0001 times of the diameter of the rolling elements.

Basic dynamic load rating: C

When each group of identical linear motion system is applied independently under the same condition, basic dynamic load rating C is the load of constant magnitude acting in one direction that results in a nominal life of 50km.

1.14.2 Static safety factor fs

Static safety factor : fs

Static safety factor fs is the ratio of the basic static load rating $C_{\scriptscriptstyle 0}$ to the load acting on the linear guide system.

 $fs=(fc * C_0)/P$ or $fs=(fc * M_0)/M$

- fs : Static safety factor
- C₀: Basic static load rating
- P[°]: Design load
- fc : Contact factor
- M_o: Static permissible moment
- M: Design moment

Reference value of static safety factor fs shown below:

Operating condition	Load condition	Minimum fs
Normally stationary	Small impact and deflection	1.0 ~ 1.3
	Big impact or twisting load is applied	2.0 ~ 3.0
Normally	Small impact or twisting load is applied	1.0 ~ 1.5
moving	Big impact or twisting load is applied	2.5 ~ 5.0

Support Unit

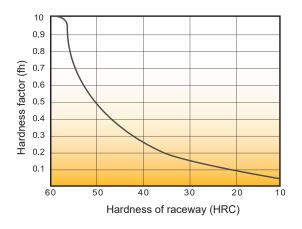
1.14.3 Contact factor fc

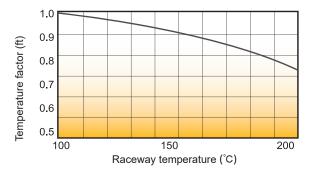
In linear motion system, it is hard to obtain identical load distribution due to moments, errors and other factors on the mounting surfaces. When multiple blocks on a rail are used in close contact, the basic load ratings C and C₀ corresponding with contact factors are shown aside.

Numbers of blocks in close contact	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
Normal operation	1

1.14.4 Hardness factor fh

For linear motion system, its optimum load carrying capacity is HRC 58 to 64 hardness on the raceways.


If the hardness is under HRC 58, both the basic dynamic load rating and basic static load rating should be multiplied by hardness factor fh.



1.14.5

When a linear motion system is subject to temperature above 100° C, the temperature factor should be taken in to consideration.

Temperature factor ft

1.14.6 Load factor fw

The load acting on an block is resulting from acceleration, impact loads and vibration. It is extremely difficult to quantify these additional dynamic forces.

So in order to estimate the impact of this load on system life, the load must be multiplied by factor fw. Depending on he mean speed and strength of the impact load, the suggested fw values listed in the table below.

Vibration & impact	Speed (V)	fw
Light external vibrations or impacts	At low speed $V \leq 15$ m/min	1~1.5
Small external vibrations or impacts	At medium speed $15 < V \leq 60$ m/min	1.5~2.0
Significant external vibrations or impacts	At high speed V > 60m/min	2.0~3.5

1.14.7

Minimum stroke factor fm

When the single trip of running stroke is shorter than the length of the iron piece of the block, the operating life of the block will be reduced. At this time, minimum stroke factor fm must be multiplied by the calculation result of the life.

Length of block iron / single trip of running stroke	fm
1	1
0.9	0.91
0.8	0.82
0.7	0.73
0.6	0.63
0.5	0.54
0.4	0.44
0.3	0.34
0.2	0.23

1.15 Life calculation formula

Given the basic dynamic load rating C and equivalent load P, the life of the linear guide is calculated as follows:

$$L = fs * \left(\frac{fh * ft * fc}{fw} * \frac{C}{P}\right)^3 * 50$$

L: Nominal life (km) (When a batch of the same linear motion system moves one by one under the same conditions, 90% of them can reach the total running distance without surface peeling.)

P: Equivalent load

Use the following formula to calculate the nominal life (L). When the stroke length and reciprocation times are constant, the life can be calculated as follows

Ln=
$$\frac{L*10^{\circ}}{2*Ls*N1*60}$$

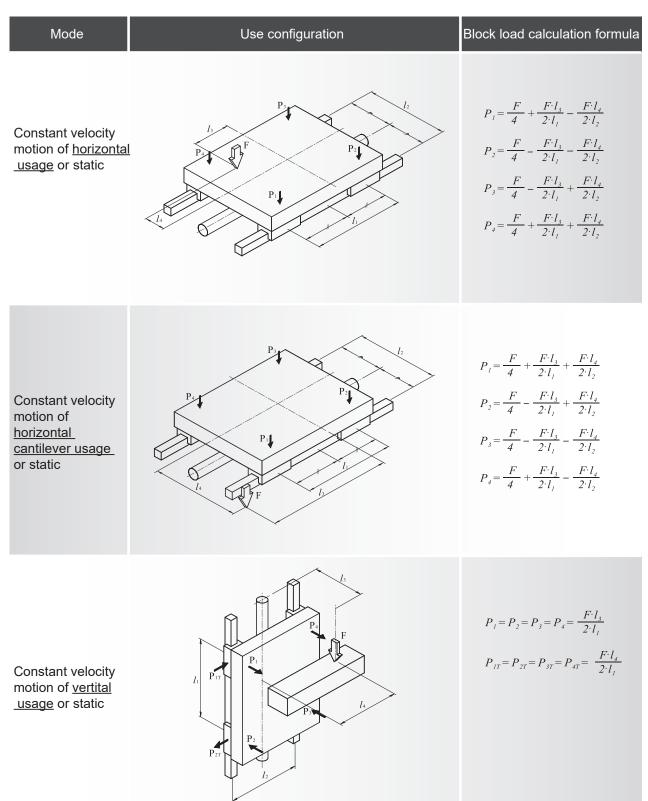
Ln: Life time (h) Ls: Stroke length (mm) N1:Reciprocation times/per minute (min⁻¹) Self-lubricated Linear Bearing

Standard

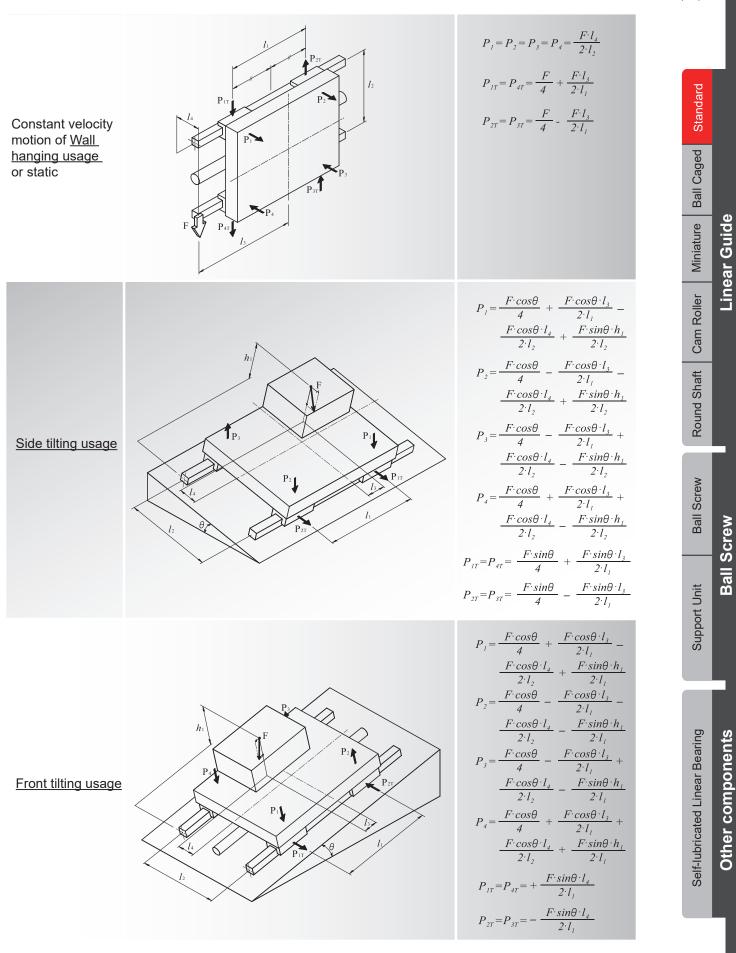
Ball Caged

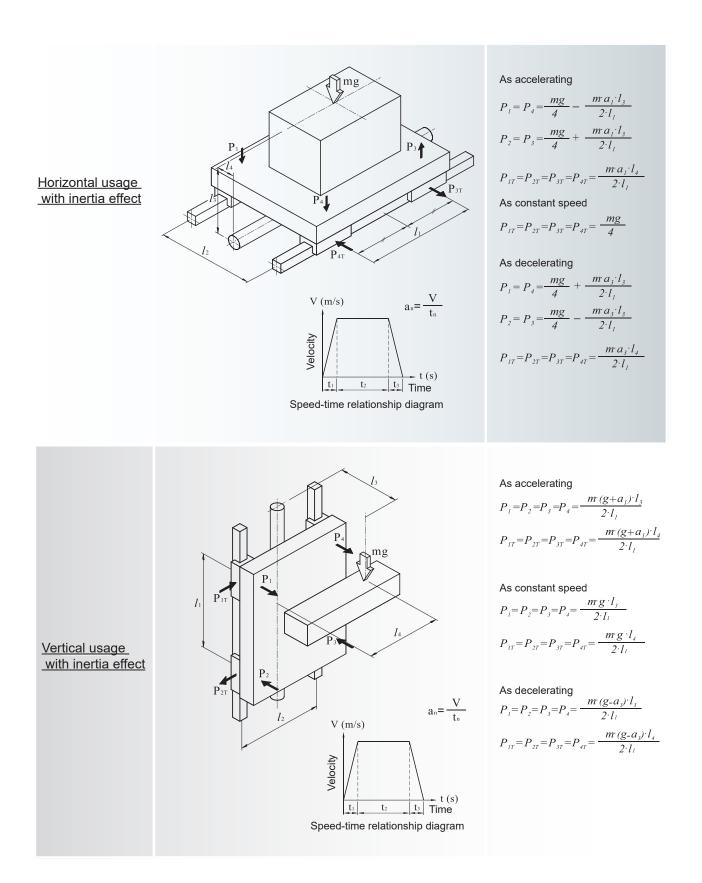
Miniature

Cam Roller

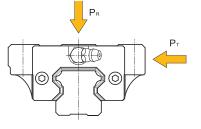

Round Shaft

Ball Screw


Support Unit


1.16 / Calculation of workload

The load acting on the linear guide will change depending on the position of the gravity of the object, the thrust position, and the inertial force generated by the acceleration and deceleration as start and stop during operation. Therefore, when using a linear guide, various conditions of usage must be considered to calculate the correct workload.

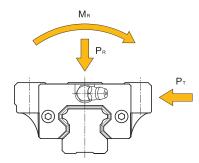

1.17 Calculation of equivalent load

The block of the linear guide can withstand loads and moments in radial, reverse-radial, and lateral directions at the same time. When there are multi-directional loads, all loads can be converted into equivalent loads in the radial or lateral direction. Then calculate its life or static safety factor.

ABBA's BR series linear guides are designed with equal load capacity in four directions. When two or more (including two) rails are used in pairs, the equivalent load is calculated as follows.

 $P_E = \left| P_R \right| + \left| P_T \right|$

- P_E : Equivalent load (kgf)
- P_R : Radial or reverse radial load (kgf)
- P_T : Lateral load (kgf)



In the case of a single rail, the equivalent load must take into account the moment effect, and its calculation formula is as follows.

$$P_E = \left| P_R \right| + \left| P_T \right| + C_0 \cdot \frac{\left| M \right|}{M_R}$$

 P_E : Equivalent load (kgf)

- P_R : Radial or reverse radial load (kgf)
- P_T : Lateral load (kgf)
- C_0 : Basic static load rating (kgf)
- M : Calculation torque (kgf *m)
- M_R : Allowable static torque (kgf *m)

1.18 Calculation of average load with variable load

When the block in operation is subjected to a variable load, the average load equivalent to the fatigue life of the block can be obtained according to the varying load conditions to calculate its fatigue life. The basic calculation formula for the average load of rolling elements as steel balls is shown below.

$$P_m = \sqrt[4]{\frac{1}{L} \sum_{n=1}^{n} (P_n^{i} \cdot L_n)}$$

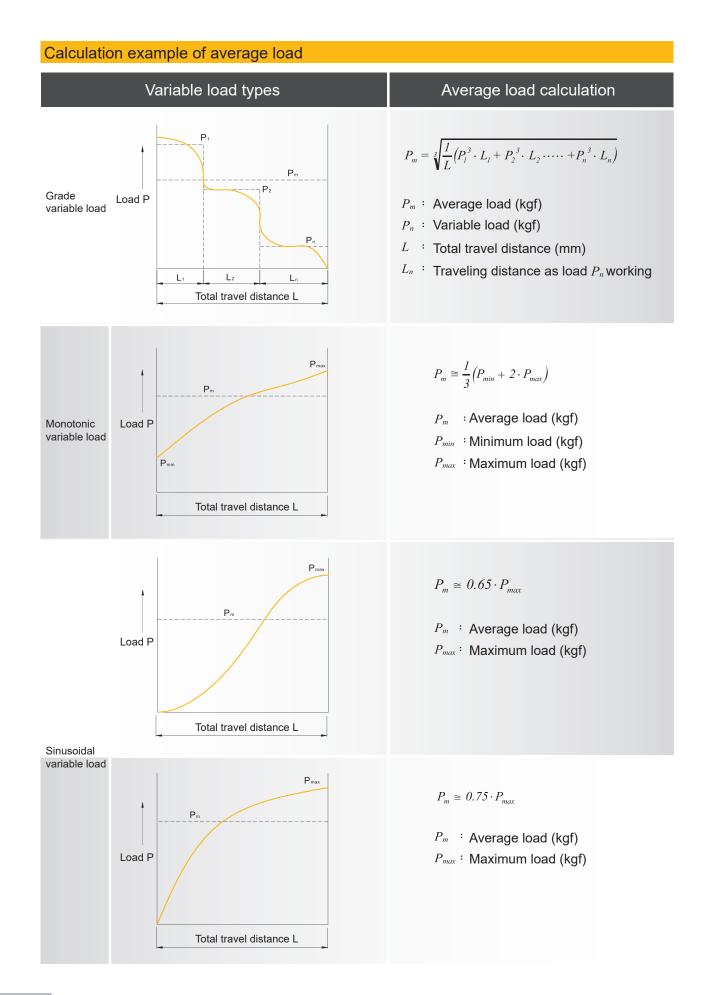
 P_m : Average load (kgf)

- P_n : Variable load (kgf)
- *L* : Total travel distance (mm)
- L_n : Traveling distance as load P_n working

Self-Iubricated Linear Bearing

Standard

Ball Caged

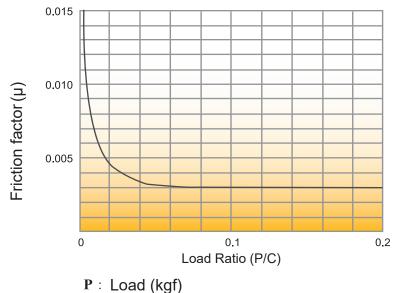

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit


1.19/ Friction

Refer to the following formula to calculate friction

 $F = \mu * W + f$

- F: Friction (kgf) W: Load (kgf)
- μ : Friction factor f: Running resistance of standard dust wiper

µ : Friction factor

C : Basic dynamic load rating (kgf)

f: Friction resistance of standard front seal

	Unit : kgf				
Friction	Friction resistance				
Model	Standard front seal				
BR15	0.4				
BR20	0.5				
BR25	0.6				
BR30	0.8				
BR35	0.95				
BR45	1.4				

Note:

The value is based on the block with standard front seal at both ends and added with Grease No.2.

1.20/Lubrication

1.20.1 Factory pre-lubrication

BR blocks are factory pre-lubricated with Grease No.2 and the lubricant reservoir is factory pre-lubricated with Grease No.00.

1.20.2 Grease re-lubrication

Re-lubrication intervals recommendation

1. Norminal size 30 and below: per 100km; nominal size 35 and above: per 40km

2. Make supplimentary periodically per 3 months.

Re-lubrication intervals should be apply upon one of above condition comes first.

2 Grease inputting recommendation

Recommended whether for first or relubrication, you should

1. Wipe off the anti-rust oil on the surface of the rail and block to prevent it from diluting the grease.

2. Fill the entire space inside the block with grease until it just overflows.

Note:

Because the block scraper of ABBA has a good scraping and sealing effect, so the grease on the surface of the rail can not enter the block, nor can it have lubrication effect.

3 Recommended re-lubricition amount

	Unit :						
Recommended re-lubricition amount							
Nominal size	Amount	Nominal size	Amount	Nominal size	Amount		
BRC15A0		BRC25R0	3~4	BRD35A0	6~8		
BRC15R0	2~3	BRC25U0	2~3	BRD35R0			
BRC15U0		BRC25SU	2~3	BRD35U0			
BRC15SU	1~2	BRC25LA	4~6	BRD35SU	4~6		
BRC20A0	2~3	BRC25LR		BRD35LA	7~10 9~14		
BRC20R0		BRC30A0		BRD35LR			
BRC20U0		BRC30R0		BRD45A0			
BRC20SU		BRC30U0		BRD45R0			
BRC20LA		BRC30SU	3~5	BRD45U0			
BRC20LR	3~4	BRC30LA	0.0	BRD45LA			
BRC25A0		BRC30LR	6~8	BRD45LR	11~17		

Table 1.20.1

4 Grease performance

Item	No. 00	No. 2	
Base oil	Mineral oil	Mineral oil	
Soap base	Lithium	Lithium	
Drop point [°] C	168	180	
Appearance	Amber	Amber	
Viscosity of base oil (cSt, @ 40 °C)	15.5	16	
Viscosity of base oil (cSt, @ 100 °C)	170	200	

Table 1.20.2

1.20.3 Oil re-lubrication

- First time re-lubrication: apply to whole internal block, please refer to table 1.20.1 for appropriate grease amount.
- Re-lubricaton amount: Q=n/150 (cm /hrs) n: Nominal size of rail (mm)
- Recommended lubrication oil spec.
 Oil mist lubrication: ISO VG32~68
 Clearance oil lubrication: ISO VG68~220
 Oil type : DIN 51517 CLP or CGLP

Standard

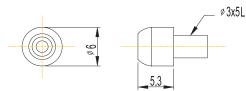
Ball Caged

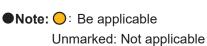
Miniature

Cam Roller

Round Shaft

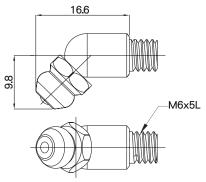
Ball Screw

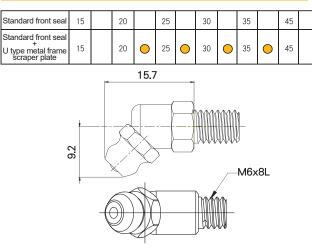

Support Unit


Self-lubricated Linear Bearing

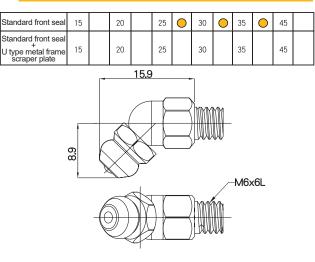
1.21 Grease nipple(standard)

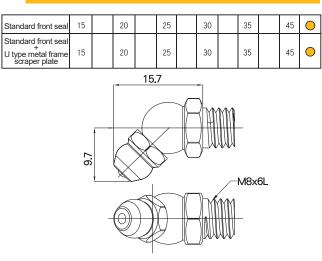
P140129 (NLA01)


Standard front seal 15 \bigcirc 20 25 30 35 45 Standard front seal 20 15 25 30 35 45 U type metal frame scraper plate \bigcirc



P140880


Standard front seal	15	20	\circ	25	30	35	45	
Standard front seal + U type metal frame scraper plate	15	20		25	30	35	45	


P140137 (NLB03)

P140135 (NLB02)

P140138 (NLB04)

Note:

For optional pipe nipples or other special nipples, please contact ABBA or ABBA authorized distributors.

Standard

Ball Caged

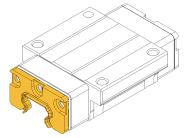
Miniature

Cam Roller

Round Shaft

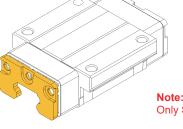
Ball Screw

Support Unit


Ball Screw

Linear Guide

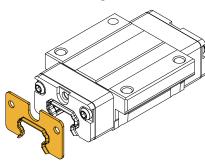
1.22 Accessories


1.22.1 Standard front seal

Standard front seals are contact seals that can prevent external contaminants from entering the block Standard front seal is suitable for normal environment.

1.22.2 Low friction shield

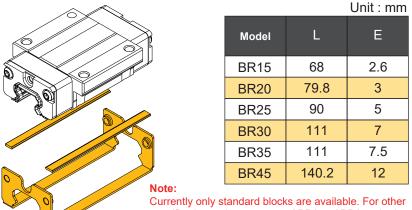
Low friction shields are non-contact seals that can reduce running resistance caused by standard front seals. It is suitable for environments that require low running resistance and no external pollutants, such as clean rooms etc.



Only SIZE15-30 can be selected, please contact ABBA for other sizes.

1.22.3 / Sci

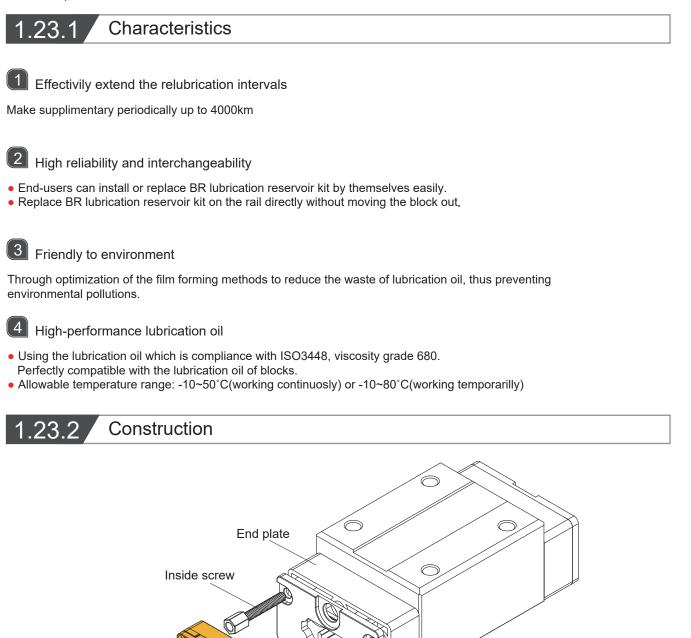
Scraper plate


Scraper plates are non-contact seals that needs to be placed outside the seal. Its function is to prevent the seal from being damaged by larger pollutants or hot metal chips. Suitable for environments with large pollutants or metal chips, such as milling machines etc.

	Unit : mm
Model	Thickness
BR15	1
BR20	1
BR25	1.5
BR30	1
BR35	1
BR45	1

.22.4 U type metal frame + side seals

U type metal frames can hold two side seals and change the block dimension values of L and E as below table. Refer to P38~43 for definition of L and E.


Other components

Self-lubricated Linear Bearing

Currently only standard blocks are available. For other specifications, please contact ABBA or ABBA authorized distributors.

1.23 BR Lubrication reservoir kit

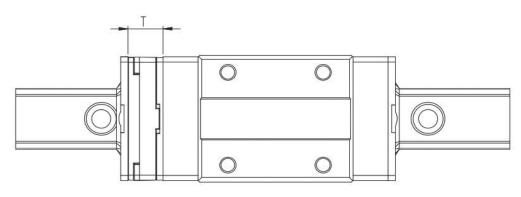
BR lubrication reservoir kit is run by high oil content of reservoir and optimization of film forming designed to provide adequate and proper amount of lubricant to grooves of rails, thus reaching good effect of environmental protection and extend relubrication intervals.

Low friction shield

BR lubrication reservoir kit

Standard front seal

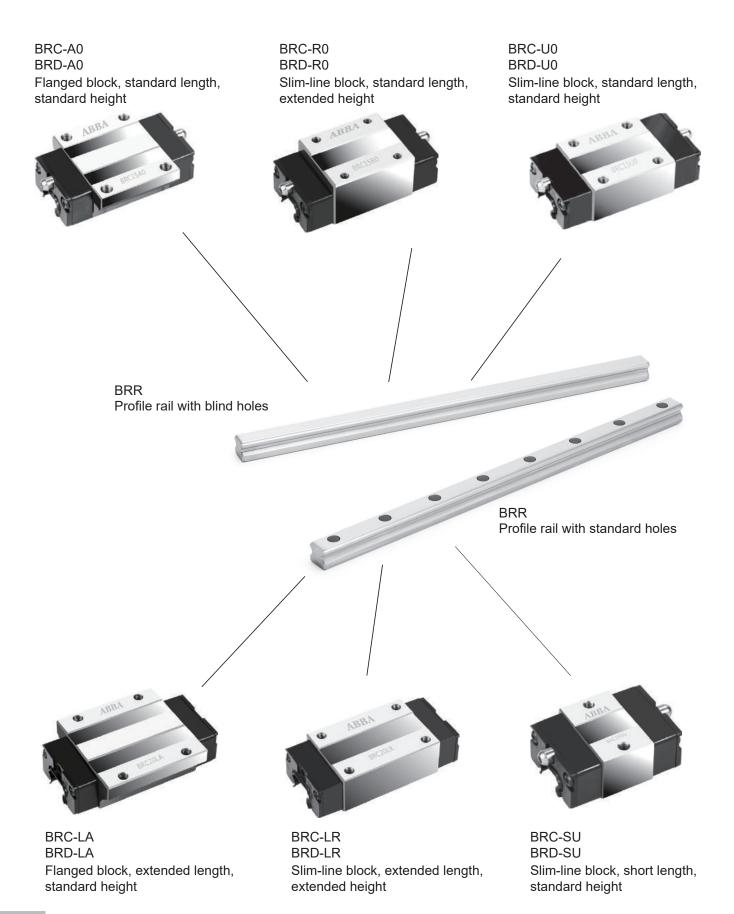
Outside screw



1.23.3 Applicable scope

- Series : BR series
- Size : 15 / 20 / 25 / 30
- Block : available for all blocks types
- End plate : available for standard end plate only
- Preload : available for all preload classes
- Precision : available for all accuracy classes

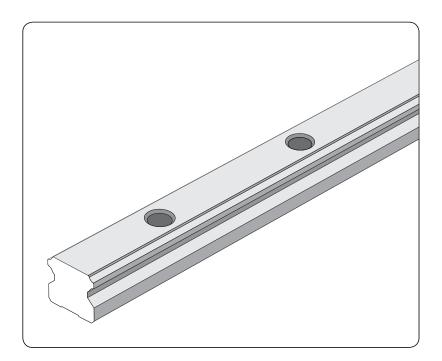
1.23.4 Installation size


BR lubrication reservoir kit will increase the length of block. Please refer to the below table for thickness T.

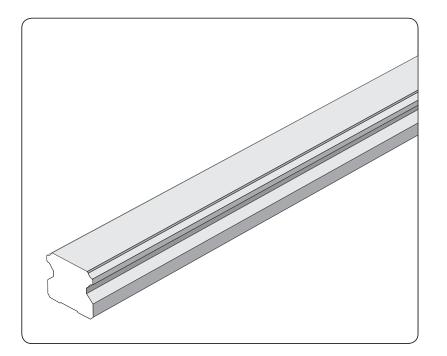
Unit : mm

Size	BR lubrication reservoir kit thickness T
15	13
20	13
25	13
30	10

1.24 / Product overview



1.25 Rail drilling method


D0 Standard hole

For upper installation, plastic hole plugs are equipped as standard.

D4 Blind hole

For underneath installation with blind hole.

1.26 Maintenance and usage of Linear Guide

Since ABBA Linear Guides are very precise products, please pay careful attention to the following:

For non-interchangeable products, you cannot arbitrarily replace the block or change its installation direction, otherwise the accuracy of the product cannot be guaranteed.

1.27 Ordering key of System

		2	Standard
Size —	25, 30, 35, 45		be
			Ball Caged
Block t	type 1/2 Flanged block(Standard length, Standard height)		
A0 LA	Flanged block (Standard length, Standard height)		Bal
SU	Slim-line block(Short length, Standard height)		
U0	Slim-line block(Standard length, Standard height)		Ire
R0	Slim-line block(Standard length, Extended height)		iatı
LR	Slim-line block(Extended length, Extended height)		Miniature
End Ca	ap Type ²⁾		~
С	Standard End Cap(for 15, 20, 25, 30)		5
C	Short End Cap(for 15, 20, 25, 30, 35, 45)		olle
Numbe	er of blocks per rail		Cam Roller
1~9	1~9 blocks per rail		Can
A~W	>9 blocks per rail (10=A, 11=B, 12=C)		0
Preload	d class ³⁾		ŧ
ZF	Clearance, Preload=0		Round Shaft
Z0	No preload=0		d D
Z1	Light preload, Preload=0~0.02C		un
Z2 Z3	Medium preload, 0.02~0.05C Heavy preload, 0.05~0.07C		Ro
Rail ler	ngth		
00080~9	99999 mm(1 mm steps)		≥
Accura	acy class ³⁾		Screw
N	Normal		Ň
H	High		Ball
Ρ	Precision		
Rail ho	ble		
D0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)		
D4	Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)		ij
loin ra	hil track ⁴⁾		Ŀ
4	Yes		ort
0	No		Support Unit
Dail tro	eatment		S
van ne	Standard (anti-rust oil)		
o na la cre	Black oxidation plating		
) 3	Hard chromium plating		
) 3			
) 3 H			
0 3 ⊣ Sealing			-
) 3 H Sealing S 1	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate		ing
0 3 H Sealing S 1 0	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield		earing
) 3 H Sealing S 1 0 V	g ⁵⁾ Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal		. Bearing
Bealing Sealing S 1 0 V W	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield		ear Bearing
0 3 H Sealing S 1 0 V W W U	g ⁵⁾ Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals		Linear Bearing
Sealing Sealing S 1 0 V W U No. of	g ⁵⁾ Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails ⁶⁾		ed Linear Bearing
) 3 4 5 5 1 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	g ⁵⁾ Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails ⁶⁾ Single rail		cated Linear Bearing
) 3 3 4 5 1 1 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	g ⁵⁾ Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails ⁶⁾ Single rail Parallel rails (W2 : 2 rails, W3 : 3 rails)		bricated Linear Bearing
) 3 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails 6) Single rail Parallel rails (W2 : 2 rails, W3 : 3 rails) et screw quantity per block 4) Please contact ABBA if you need to join rails for coated rails, P class or H class with part	rallel	f-Iubricated Linear Bearing
0 3 3 4 5 5 1 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails 6) Single rail Parallel rails (W2 : 2 rails, W3 : 3 rails) At screw quantity per block 15 : 0° nipple(2pcs)	rallel	Self-Iubricated Linear Bearing
) 3 5 5 1 0 V No. of 00 W2~W9 ipple/set A. Size 1	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails 6) Single rail Parallel rails (W2 : 2 rails, W3 : 3 rails) et screw quantity per block 4) Please contact ABBA if you need to join rails for coated rails, P class or H class with part	rallel	Self-lubricated Linear Bearing
0 3 5 5 5 1 0 7 7 7 7 7 7 7 7 7 7 7 7 7	g 5) Standard front seal (only end seal) Standard front seal + Scraper plate Low friction shield BR lubrication reservoir kit + Standard front seal BR lubrication reservoir kit + Standard front seal + Scraper plate Standard front seal + U type metal frame + side seals parallel rails 6) Single rail Parallel rails (W2 : 2 rails, W3 : 3 rails) At screw quantity per block 15 : 0' nipple(2pcs) 20/25/30/35/45 : 45' nipple(1pc)+ screw(1 pc)	rallel	Self-lubricated Linear Bearing

3) Refer to following table for limitation

	0		
	System		
Accuracy	P	Н	N
	-	-	ZF
	Z0	Z0	Z0
Preload	Z1	Z1	Z1
	Z2	Z2	Z2
	Z3	Z3	Z3

•

35

R0 LR

٠

SU UO

BRD

Short End Cap)

15

45

A0

•

LA

LR

SU UO RO

0

• • • • • •

A0 LA

٠

.

•

(Standard End Cap)

20 25 30

35

45

1.28 Ordering key of Rail

15, 20	, 25, 30, 35, 45
Rail len	gth
	~99999 mm (1 mm steps)
Accura	cy class
N	Normal
Rail ho	le
Rail ho D0	
	le
D0	Be
D0 D4	Be
D0 D4	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
D0 D4 Join ra	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
D0 D4 Join ra A 0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) I track 1) Yes
D0 D4 Join ra A 0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)
D0 D4 Join rai A 0 Rail tre	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)

1) Please contact ABBA if you need to join rails for coated rails, P class or H class with parallel used product.

1.29 Ordering key of Block

		В	R	с	1	5		A	0	z	1		N	0	s	Standard
		В	ĸ	Ť	╘	5	-			2	Ľ	-		Ť	1	 Stan
End C	ар Туре ¹⁾															σ
С	Standard End Cap(for 15, 20, 25, 30)															ade
D	Short End Cap(for 15, 20, 25, 30, 35, 45)															Ball Caged
Size -																
	0, 25, 30, 35, 45															Miniature
Block	type ²]							nia
A0	Flanged block(Standard length, Standard height)															Ξ
LA SU	Flanged block(Extended length, Standard height) Slim-line block(Shot length, Standard height)															
U0	Slim-line block (Standard length, Standard height)															ller
R0	Slim-line block(Standard length, Extended height)															Ro
LR	Slim-line block(Extended length, Extended height)															Cam Roller
Preloa	d class ³⁾															
ZF	Clearance, Preload=0															Jaft
Z0	No preload, Preload=0															I SI
Z1	Light preload, Preload=0~0.02C															Round Shaft
Accur	acy class ³⁾															L L L L L L L L L L L L L L L L L L L
Ν	Normal															
Block	treatment															>
0	Standard (anti-rust oil)															Ball Screw
В	Black oxidation plating															ی در
Н	Hard chromium plating															Bal
Sealin	g ⁴)															
S	Standard front seal (only end seal)															
1	Standard front seal + Scraper plate Low friction shield															
0 U	Standard front seal + U type metal frame + side seals															inL
0	- 21															Support Unit
																odd
																Sul

1) C: End cap with Self-lubricant part D: End cap without Self-lubricant part

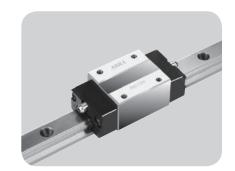
2) Nipple/set screw quantity per block

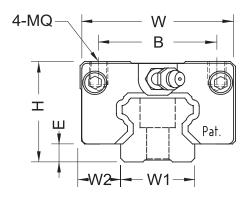
- A. Size 15 : 0° nipple(2pcs)
- B. Size 20/25/30/35/45 : 45°nipple(1pc)+ screw(1 pc)

3) Refer to following table for limitation

	Block		
Accuracy	P	Н	N
	-	-	ZF
Preload	-	-	Z0
	-	-	Z1

- 4) Block type cross table
- ●/○ : Block type available


• : Sealing U type, Standard seal + Metal frame to hold two side seals


BRC (Standard End Cap)	A0	LA	SU	U0	R0	LR
15	•		0	٠	٠	
20	•	0	0	٠	٠	0
25	•	0	0	٠	•	0
30	•	0	0	•	•	0
35						
45						
BRD (Short End Cap)	A0	LA	SU	U0	R0	LR
	A0 0	LA	su °	0U	R0	LR
(Short End Cap)		LA o				LR o
(Short End Cap) 15	0		0	0	0	
(Short End Cap) 15 20	0	0	0	0	0	0
(Short End Cap) 15 20 25	0	0	0	0	0	0

Linear Guide

1.30 Dimension of Linear Guide

1.30.1 BRC-R0/LR, BRD-R0/LR

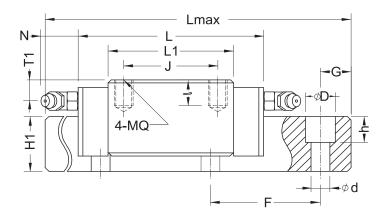
Model No.			embly im)					Block mm)				Rail (mm)				
	н	w	W2	E	L	BxJ	MQx≬	L1	Oil hole	T1	(N)	W1	H1	F	dxDxh	
BRC15R0 BRD15R0	28	34	9.5	4.6	66 56	26x26	M4x6	40	Ø 3	8.3	5	15	14	60	4.5x7.5x5.8	
BRC20R0 BRD20R0	30	11	12	5	77.8 67.8	32x36	M5x8	48.8	M6x1	7	15.6	20	18	60	6x9,5x9,0	
BRC20LR BRD20LR	30 44	12	5	92.4 82.4	32x50	OXCIVI	63.4	IVIOX I		15.6	20	10	00	0.9.3.9.0		
BRC25R0 BRD25R0	40	40	10.5	7	88 78	35x35	M6x10	57	M6x1	11.8	15.6	23	22	60	7x11x9.5	
BRC25LR BRD25LR	40	48	12.5	/	110.1 100.1	35x50	IVIOXIU	79.1	WOX I	11.0	10.0	25	22	00	731139.5	
BRC30R0 BRD30R0	45	60	16	9	109 99	40x40	NO 10	72	M6x1	10	15.6	28	26	80	9x14x12.5	
BRC30LR BRD30LR	40	00	10	9	131.3 121.3	40x60	M8x13	94.3	WOX I	10	10.0	20	20	00	5714712.5	
BRD35R0 BRD35LR	55	70	18	9.5	109 134.8	50x50 50x72	M8x13	80 105.8	M6x1	15	15.6	34	29	80	9x14x12.5	
BRD45R0 BRD45LR	70	86	20.5	14	138.2 163	60x60 60x80	M10x16.5	105 129.8	M8x1	18.5	16	45	38	105	14x20x17.5	

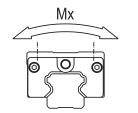
Standard

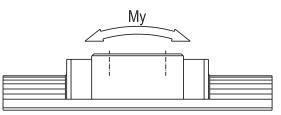
Ball Caged

Miniature

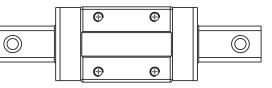
Cam Roller

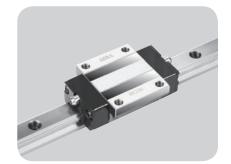

Round Shaft

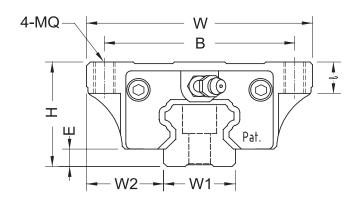

Ball Screw


Support Unit

Linear Guide



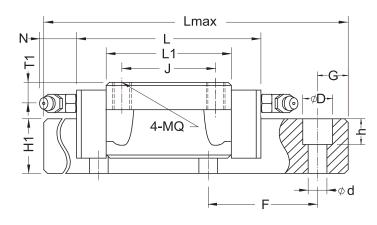


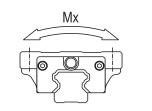

Model No.	Ref. c (mn			ad rating (gf)	S	tatic mom (Kgf*m)	ent	Weight			
	Lmax	G	С	Co	Мх	Му	Mz	Block (Kg)	Rail (Kg/m)		
BRC15R0 BRD15R0	4000	20	850	1350	10.1	6.8	6.8	0.19	1.4		
BRC20R0 BRD20R0	4000	20	1400	2400	24	14.6	14.6	0.31	2,6		
BRC20LR BRD20LR			1650	3000	30	23.8	23.8	0.47	2.0		
BRC25R0 BRD25R0	4000	20	1950	3200	36.8	22.8	22.8	0.45	3.6		
BRC25LR BRD25LR	+000	20	2600	4600	52.9	45 <u>.</u> 5	45.5	0.56	3.0		
BRC30R0 BRD30R0	4000	20	2850	4800	67.2	43.2	43.2	0.91	5.2		
BRC30LR BRD30LR		20	3600	6400	89.6	75.4	75.4	1.2			
BRD35R0 BRD35LR	4000	20	3850 4800	6200 8300	105.4 141.1	62 109.8	62 109.8	1.5 1.9	7.2		
BRD45R0 BRD45LR	4000 22.5		6500 7700	10500 13000	236.3 292.5	137.8 210.9	137.8 210.9	2.3 2.8	12.3		

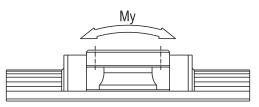
Note: BR35 and BR45 are not equipped with self-lubricant parts.

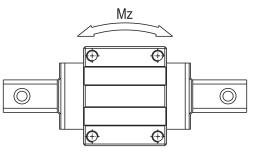
Self-Iubricated Linear Bearing

1.30.2 BRC-A0/LA, BRD-A0/LA






Model No.	Assembly (mm)					Block (mm)							Rail (mm)					
	н	w	W2	Е	L	BxJ	MQxl	L1	Oil hole	T 1	(N)	W1	H1	F	dxDxh			
BRC15A0	24	47	16	4.6	66	38x30	M5x8	40	ø 3	4.3	5	15	14	60	4.5x7.5x5.8			
BRD15A0	24	47	10	4.0	56	30,30	101020	40	¢ 0	4.5	5	10	14	00	4.077.070.0			
BRC20A0					77.8			48.8										
BRD20A0	30	63	21.5	5	67.8	53x40	M6x9	40.0	M6x1	7	15.6	20	18	60	6x9.5x9.0			
BRC20LA	00			Ĭ	92.4	101029	63.4	WIOXT	ľ	10.0	20			0.9.5.9.0				
BRD20LA					82.4			00.4										
BRC25A0			23.5		88	57x45	M8x12	57										
BRD25A0	36	70		7	78			57	M6x1	7.8	15.6	23	22	60	7x11x9.5			
BRC25LA	30	10	23.5	'	110.1		IVIOA 12	79.1	WOXT	1.0	10.0	20	~~	00	771173.5			
BRD25LA					100.1			75.1										
BRC30A0					109			72										
BRD30A0	42	90	31	9	99	72x52	M10x12	12	M6x1	7	15.6	28	26	80	9x14x12.5			
BRC30LA	42	90	51	9	131.3	12232	WITOATZ	94.3	INIOA I	· '	10.0	20	20	00	9814812.5			
BRD30LA					121.3			34.5										
BRD35A0	10	105			109			80							0.44.40.5			
BRD35LA	48	100	33	9.5	134.8	82x62	M10x13	105.8	M6x1	8	15.6	34	29	80	9x14x12.5			
BRD45A0	00	100	07.5		138.2	400.00	140.45	105		0.5	10	45	00	405	44 00 47 5			
BRD45LA	60	120	37.5	14	163	100x80	M12x15	129.8	M8x1	8.5	16	45	38	105	14x20x17.5			



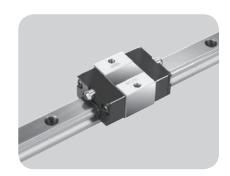
Ref. d (mr		Basic loa (Ko		Sta	itic mome (Kgf*m)	nt	Weight								
Lmax	G	С	Co	Мх	Му	Mz	Block (Kg)	Rail (Kg/m)							
4000	20	850	1350	10.1	6.8	6.8	0.21	1.4							
		1400	2400	24	14.6	14.6	0.4								
4000	20	4050	2000		22.0		0.50	2.6							
		1650	3000	30	23.0	23.0	0.52								
			1950	3200	36.8	22.8	22.8	0.57							
4000	20							3.6							
		2600	4600	52.9	45.5	45.5	0.72								
	20 -	2850	4800	67.2	43.2	43.2	1.1								
4000		20	20	20	20	20	20	20	20						
		3600	6400	89.6	75.4	75.4	1.4								
		3850	6200	105.4	62	62	1.6	= 0							
4000	20	4800	8300	141.1	109.8	109.8	2	7 <u>.</u> 2							
4000	22 F	6500	10500	236.3	137.8	137.8	2.7	10.0							
4000	22.5	7700	13000	292.5	210.9	210.9	3.6	12.3							
	(mm Lmax 4000 4000 4000 4000	(mm) Lmax G 4000 20 4000 20 4000 20 4000 20 4000 20 4000 20 4000 20 4000 20 4000 20	(mm) (K) $Lmax G C $ $4000 20 850 $ $4000 20 100 $ $1400 $ $1050 $ 1050	(mm) (Kgf) Lmax G C Co 4000 20 850 1350 4000 20 850 1350 4000 20 1400 2400 4000 20 1650 3000 4000 20 1950 3200 4000 20 2600 4600 4000 20 2850 4800 4000 20 3850 6200 4000 20 6500 10500	(mm) (Kgf) Lmax G C Co Mx 4000 20 850 1350 10.1 4000 20 850 1350 24 4000 20 1400 2400 24 4000 20 1650 3000 30 4000 20 1950 3200 36.8 4000 20 2600 4600 52.9 4000 20 2850 4800 67.2 4000 20 3850 6200 105.4 4000 20 3850 6200 105.4 4000 22.5 6500 10500 236.3	(mm) (Kgf) (Kgf*m) Lmax G C Co Mx My 4000 20 850 1350 10.1 6.8 4000 20 850 1350 10.1 6.8 4000 20 1400 2400 24 14.6 4000 20 1650 3000 30 23.8 4000 20 1950 3200 36.8 22.8 4000 20 2600 4600 52.9 45.5 4000 20 2850 4800 67.2 43.2 4000 20 3850 6200 105.4 62 4000 20 3850 6200 105.4 62 4000 22.5 6500 10500 236.3 137.8 4000 22.5 7700 13000 292.5 210.9	(mm) (Kgf) (Kgf*m) Lmax G C Co Mx My Mz 4000 20 850 1350 10.1 6.8 6.8 4000 20 850 1350 10.1 6.8 6.8 4000 20 1400 2400 24 14.6 14.6 4000 20 150 3000 30 23.8 23.8 4000 20 1950 3200 36.8 22.8 22.8 4000 20 2600 4600 52.9 45.5 45.5 4000 20 2850 4800 67.2 43.2 43.2 4000 20 3850 6200 105.4 62 62 4000 20 3850 6200 105.4 62 62 4000 22.5 6500 10500 236.3 137.8 137.8 4000 22.5 7700 13000 <th>(mm) (Kgf) (Kgf*m) Weil Lmax G C Co Mx My Mz Block (Kg) 4000 20 850 1350 10.1 6.8 6.8 0.21 4000 20 850 1350 10.1 6.8 6.8 0.21 4000 20 1400 2400 24 14.6 14.6 0.4 4000 20 1650 3000 30 23.8 23.8 0.52 4000 20 1950 3200 36.8 22.8 22.8 0.57 4000 20 1950 3200 36.8 22.8 43.2 1.1 4000 20 2850 4800 67.2 43.2 43.2 1.1 4000 20 3850 6200 105.4 62 62 1.6 4000 20 3850 6200 105.4 62 62 1.6 4000</th>	(mm) (Kgf) (Kgf*m) Weil Lmax G C Co Mx My Mz Block (Kg) 4000 20 850 1350 10.1 6.8 6.8 0.21 4000 20 850 1350 10.1 6.8 6.8 0.21 4000 20 1400 2400 24 14.6 14.6 0.4 4000 20 1650 3000 30 23.8 23.8 0.52 4000 20 1950 3200 36.8 22.8 22.8 0.57 4000 20 1950 3200 36.8 22.8 43.2 1.1 4000 20 2850 4800 67.2 43.2 43.2 1.1 4000 20 3850 6200 105.4 62 62 1.6 4000 20 3850 6200 105.4 62 62 1.6 4000							

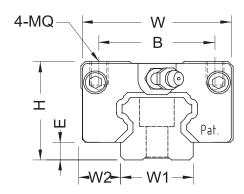
Note: BR35 and BR45 are not equipped with self-lubricant parts.

Standard

Miniature Ball Caged

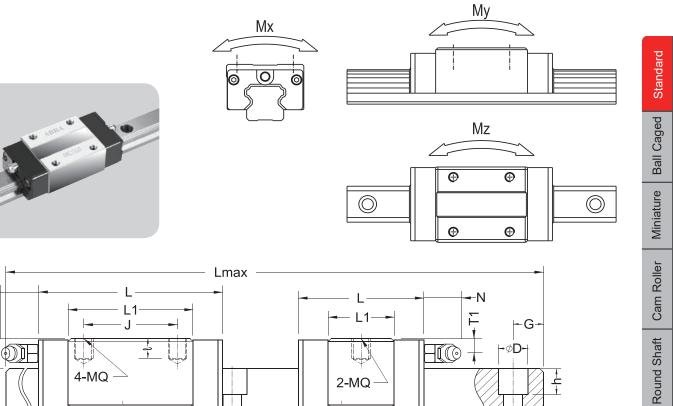
Cam Roller


Round Shaft


Ball Screw

Support Unit

Self-Iubricated Linear Bearing


1.30.3 BRC-SU/U0, BRD-SU/U0

Model No.			embly າm)					Block mm)				Rail (mm)					
	н	w	W2	Е	L	BxJ	MQx≬	L1	Oil hole	T1	(N)	W1	H1	F	dxDxh		
BRC15U0					66	26x26		40									
BRD15U0	24	34	9.5	4.6	56	20/20	M4x5.6	40	Ø3	4.3	5	15	14	60	4.5x7.5x5.8		
BRC15SU					47.6	26x -		21.6	φs	4.5							
BRD15SU					37.6	207		21.0									
BRC20U0					77.8	32x32		48.8									
BRD20U0	28	42	11	5	67.8	02/02	M5x6.4		M6x1	5	15.6	20	18	60	6x9.5x9.0		
BRC20SU	-				57	32x -		28									
BRD20SU					47	OLA											
BRC25U0	-				88	35x35		57									
BRD25U0	33	48	12.5	7	78		M6x8		M6x1	4.8	15.6	23	22	60	7x11x9.5		
BRC25SU					62.5	35x -		31.5									
BRD25SU					52.5												
BRC30U0					109	40x40		72									
BRD30U0	42	60	16	9	99		M8x11.5		M6x1	7	15.6	28	26	80	9x14x12.5		
BRC30SU	- 72				75.6	40x -	MOXT1.0	38.6	MOXT	· '	10.0	20	20	00			
BRD30SU					65.6												
BRD35U0	48	70	18	9.5	109	50x50	M8x11.2	80	M6x1	8	15.6	34	29	80	9x14x12.5		
BRD35SU	-0	10		5.5	74.7	50x -	1010711.2	45.7		_		54	23	00	371-7712.5		
BRD45U0	60	86	20.5	14	138.2	60x60	M10x13	105	M8x1	8.5	16	45	38	105	14x20x17.5		

Model No.	Ref. data (mm)			ad rating (gf)	S	tatic mom (Kgf*m)	ent	Weight						
	Lmax	G	С	Co	Мх	Му	Mz	Block (Kg)	Rail (Kg/m)					
BRC15U0			850	1350	10.1	6.8	6.8	0.17						
BRD15U0	4000	20	000	1350	10.1	0.0	0.0	0.17	1.4					
BRC15SU	4000	20	520	680	5.1	1.8	1.8	0,1	1.4					
BRD15SU			020	000	0.1	1.0	1.0	0.1						
BRC20U0			1400	2400	24	14.6	14.6	0.26						
BRD20U0	4000	20	1400	2400	24	14.0	14.0	0.20	2.6					
BRC20SU	1000		950	1400	7	4.9	4.9	0,17						
BRD20SU			000	1100	,			0.11						
BRC25U0		20	1950	3200	36.8	22.8	22.8	0.38						
BRD25U0	4000		20	20	20	20	20	1000	0200		22.0		0.00	3.6
BRC25SU			1250	1750	17.5	6.9	6.9	0,21						
BRD25SU			1200			010								
BRC30U0			2850	4800	67.2	43.2	43.2	0.81						
BRD30U0	4000	20	2000	1000	0112	1012			5.2					
BRC30SU		0	1750	2400	33.6	11.6	11.6	0.48	0.2					
BRD30SU														
BRD35U0	4000	20	3850	6200	105.4	62	62	1.2	7.2					
BRD35SU			2500	3650	62.1	20.9	20.9	0.8						
BRD45U0	4000	22.5	6500	10500	236.3	137.8	137.8	2.1	12.3					

Note: BR35 and BR45 are not equipped with self-lubricant parts.

φd

F

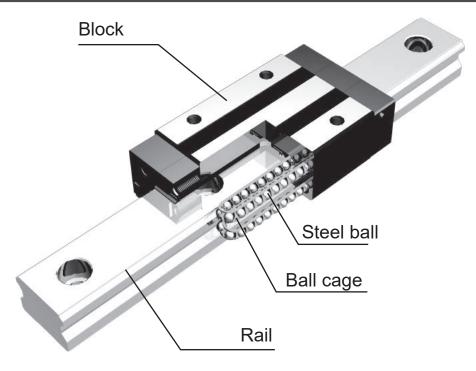
Ball Screw

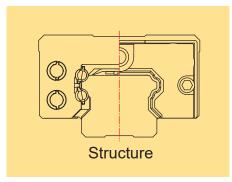
Ball Screw

Support Unit

Self-Iubricated Linear Bearing

Linear Guide


ABBA


Ball Caged Linear Guide

2.1 Characteristics

- 1 Interchangeable design
- 2 Equivalent loading, long service life
- 3 Good lubricity, long-term free of oil and maintenance
- Equipped with ball cage, lower noise and smoother running

2.2 Construction

BC series is equipped with **ABBA** 's latest developed Ball cage, which lowers the noise, and enables high speed running, longer life time, and outstanding accuracy.

Standard

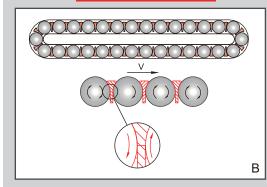
Ball Caged

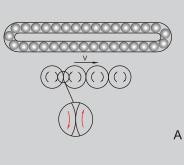
Miniature

Cam Roller

Round Shaft

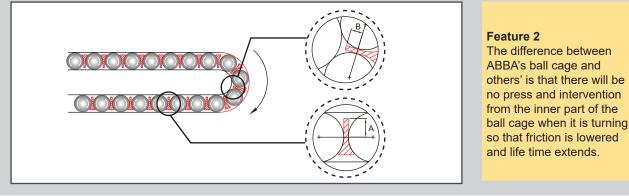
Ball Screw

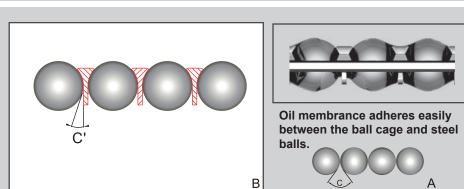

Support Unit


Ball Screw

Linear Guide

2.3 **Feature**

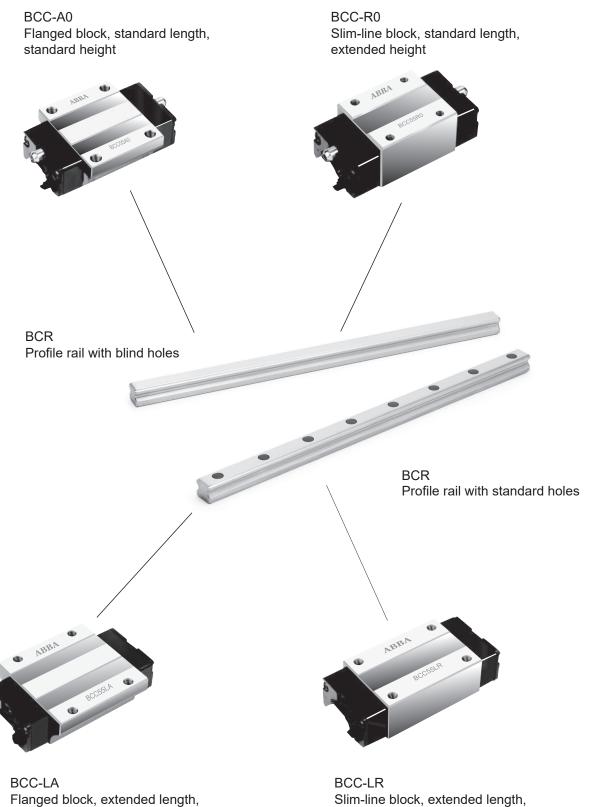

New (with ball cage)



Feature 1

Steel ball chafes against each other in drawing A, so its friction is two times larger in drawing B, so that the life time in B is longer than in A.

New (with ball cage) Feature 3 It shows in drawing B that due to the ball cage, steel balls are loaded equivalent-C2 C1 ly so that their service life could be longer. А В



Feature 4

As demonstrated above, the included angle in drawing A(C) is larger than the one in drawing B(C') with ball cage. Therefore,oil membrance adheres easily in the structure of BC series.

Self-lubricated Linear Bearing

2.4 Product overview

standard height

Slim-line block, extended length, extended height

2.5 Ordering key of System

Size	B C S <u>5 5</u> - <u>A 0 C 2 Z 1</u> - <u>1 0 8 0 0 N D 0</u> - <u>A 0 S W 2</u>	Standard
55		be
Block A0 LA R0 LR	Stype Flanged block(Standard length, Standard height) Flanged block(Extended length, Standard height) Slim-line block(Standard length, Extended height) Slim-line block(Extended length, Extended height)	Ball Caged
End (Cap Type	ē
C	Standard End Cap	iatu
Numb	ber of blocks per rail	Miniature
1~9	1~9 blocks per rail	2
A~W	>9 blocks per rail (10=A, 11=B, 12=C)	<u> </u>
Prelo a ZF Z0 Z1	ad class ¹⁾ Clearance, Preload=0 No preload, Preload=0 Light preload=0~0.02C	Cam Roller
	ength	
	~99999 mm(1 mm steps)	haf
Accui N H P	racy class ¹⁾	Round Shaft
Rail h D0 F0 D4 F4 DX	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Special machining, customized according to drawing number	Ball Screw
	rail track	
A 0	Yes (Refer to drawing for detail) No	
Rail tr 0 Sealir S 1	reatment ²⁾ Standard (anti-rust oil) ng Standard front seal (only end seal) Standard front seal + Scraper plate	Support Unit
No. o	f parallel rails	ى ت
00	9 Parallel rails (W2 : 2 rails, W3 : 3 rails)	
vv2 · · vV;		

1) Refer to following table for limitation

System									
Accuracy	Р	н	Ν						
	-	-	ZF						
	Z0	Z0	Z0						
Preload	Z1	Z1	Z1						
	Z2	Z2	Z2						
	Z3	Z3	Z3						

2) Block surface treatment

A. Standard: Anti-rust oil

B. Non-Standard:See drawing

Nipple/set screw quantity per block
 A. Size 20/25/30/35/45/55 : 45°nipple(1pc)+ screw(1 pc)

Other components

Self-Iubricated Linear Bearing

Ball Screw

Linear Guide

2.6 Ordering key of Rail

	BCR <u>5</u> 5 - <u>10800</u> <u>ND0</u> -	<u>A</u>
Size		
55		
Rail le	gth	
00080	99999 mm(1 mm steps)	
Accu	cy class	
N	Normal	
Rail h	e	
	e	
D0	-	
D0 F0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)	
Rail h D0 F0 D4 F4	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.)	
D0 F0 D4	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.)	
D0 F0 D4 F4 DX	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Special machining, customized according to drawing number	
D0 F0 D4 F4 DX	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Special machining, customized according to drawing number	
D0 F0 D4 F4 DX Rail h	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Special machining, customized according to drawing number	
D0 F0 D4 F4 DX Rail h A 0	Standard hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Standard hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Blind hole(Standard hole distance, the distance of the first and last attachment holes is not produced equidistantly.) Special machining, customized according to drawing number e Yes (Refer to drawing for detail)	

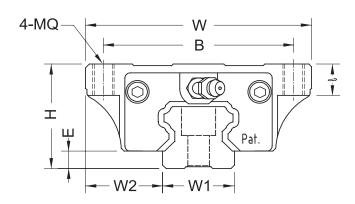
2.7 / Ordering key of Block

		В	С	С	5	5	<u>A</u>	0	Z	1	 <u>ı</u> <u>c</u>	<u>)</u> s	_	Standard	
Size														led	
55														Ball Caged	
Block ty	уре													Ball	
A0	Flanged block(Standard length, Standard height)														
LA	Flanged block(Extended length, Standard height)													ure	
R0	Slim-line block(Standard length, Extended height)													iat	Guide
LR	Slim-line block(Extended length, Extended height)													Miniature	
Preload	I class —														inear
ZF	Clearance, Preload=0													lle	
Z0	No preload, Preload=0													집	
Z1	Light preload, Preload=0~0.02CC													Cam Roller	
Accura	cy class														
Ν	Normal													Shaft	
Block ti	reatment													d St	
0	Standard (anti-rust oil)													Round	
Sealing	I													Ľ	5
S	, Standard front seal (only end seal)														
1	Standard front seal + Scraper plate													>	
4) NB														Ball Screw	
	ıle/set screw quantity per block ize 20/25/30/35/45/55 : 45°nipple(1pc)+ screw(1 pc)													=	
A. 01														Ä	

Ball Screw

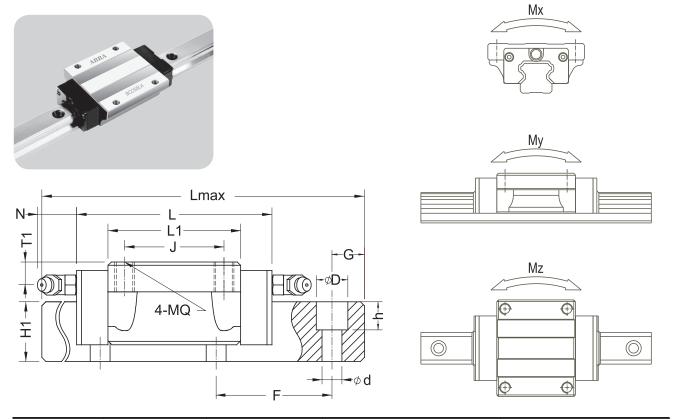
Support Unit

Self-Iubricated Linear Bearing


Other components

2.8 Dimension of Linear Guide

2.8.1


BCC-A0/LA

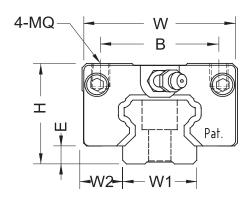
Model No.			embly າm)	/				Block (mm)						Rail (mm)				
model No.	н	w	W2	E	L	BXJ	MQx≬	L1	Oil hole	T1	(N)	W1	H1	F	dxDxh			
BCC55A0	70	140	43.5	12.7	181	116x95	M14x21	131	M8x1	20	16	53	38	120	16x23x20.1			
BCC55LA	10	140	43.5	12.7	223	110295	101 1482 1	173		20	16	53	38	120	10x23x20.1			

Model No.	Ref. data (mm)		Basic load rating (Kgf)		Sta	atic mome (Kgf*m)	ent	Weight		
inicaci i ici	Lmax	G	С	C ₀	Мх	Му	Mz	Block (Kg)	Rail (Kg/m)	
BCC55A0	4000	30	7600	12800	446	355	355	5.4	14.5	
BCC55LA	4000	30	9300	17100	580	600	600	7.1	- 14.5	

Round Shaft Cam Roller

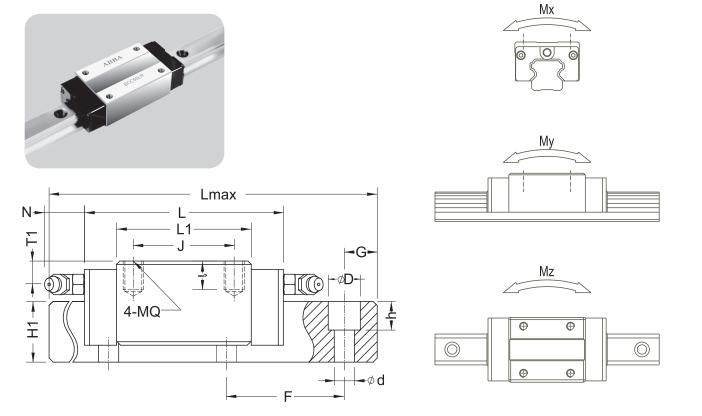
Ball Screw

Support Unit


Standard

Miniature Ball Caged

Self-Iubricated Linear Bearing


2.8.2 BCC-R0/LR

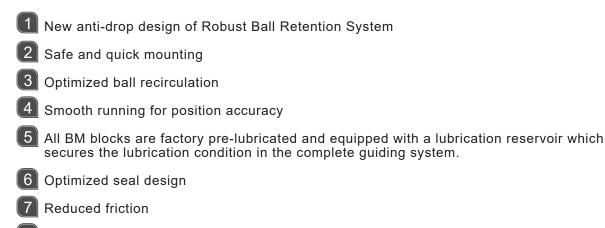
Model No.			embly າm)	'	Block (mm)								Rail (mm)			
	н	w	W2	Е	L	BxJ	MQx≬	L1	Oil hole	T1	(N)	W1	H1	F	dxDxh	
BCC55R0	80	100	23.5	127	181	75x75	M12x19	131	M8x1	30	16	E2	20	120	16x23x20.1	
BCC55LR	00	100	23.5	12.1	223	75x95	WITZX19	173	IVIOX I	30	16	53	38	120	10X23X20.1	

Model No.	Ref. data (mm)		Basic load rating (Kgf)		Sta	atic mome (Kgf*m)	ent	Weight		
	Lmax	G	G C Co Mx My Mz				Mz	Block (Kg)	Rail (Kg/m)	
BCC55R0	4000	4000 30		12800	446	355	355	5.2	14.5	
BCC55LR	4000 30		9300	17100	580	600	600	6.7	14.5	

Standard

Ball Screw

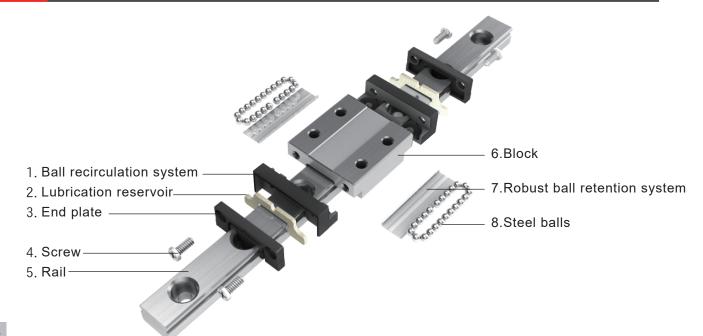
Support Unit


Self-Iubricated Linear Bearing

Miniature Linear Guide

BBA

3.1 Characteristics


- 8 Stainless steel components
- 9 Interchangeable according to ISO 12090-2

3.2 **Product specification**

The allowable use conditions of BM products are as follows :

Item	Allowable use condition
Speed	5 m/s
Acceleration	140 m/s²
Ambient temperature	-20~ +80°C (With standard front seal) -20~ +100°C (With low friction shield)
Maximum dynamic load	<0.5 C
Maximum static load	<0.5 C ₀
Minimum load	>0.001 C

3.3 Construction

Standard

Ball Caged

Miniature

Cam Roller

Round Shaft

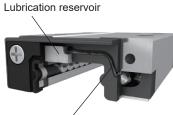
Ball Screw

Support Unit

Ball Screw

Linear Guide

3.4 Advantage


New anti-drop design of Robust Ball Retention System

- Safe and quick mounting
- Good accuracy due to anti-drop design
- Smooth running due to new Robust Ball Retention System

Lubrication reservoir

- Service life up to 20,000km
- Factory pre-lubricated with FDA-grade lubricants, lowering maintenance cost

Optimized seal design

- Extend seal life due to good abrasion-resistant material
- Excellent dust protection due to minimal clearance between rail and Robust Ball Retention System
- Dustproof function and low friction due to optimized contact of seal and rail

Stainless steel components

- Multi-purpose material for corrosion protection
- Suitable for sanitary environment such as the Medical and Food industries


Self-lubricated Linear Bearing

Optimized ball recirculation design

- Low noise, suitable for Medical and Office environments
- Smooth runnung, suitable for long-term operation

3.5 Accuracy Standard

		Unit. mm					
Item	Grade						
	Precision (P)	High(H)					
Tolerance of height (H)*	±0.010	±0.020					
Tolerance of width (W)*	±0.015	±0.025					
Difference of heights $(\triangle H)^{**}$	0.007	0.015					
Difference of widths $(\triangle W)^{**}$	0.007	0.015					
Running parallelism of Block side $\mathbb D$ relative to Rail side $\mathbb A$	∆C Refer	to Fig.1					
Running parallelism of Block side E F relative to Rail side B C	E &F R€	efer to Fig.1					

* The tolerances apply over the entire guide length for any combination of block and rail. **The tolerance $\triangle H$ and $\triangle W$ relate to the ideal centre of the block. Each dimension is derived from the mean value of two measured points with identical centre distance.

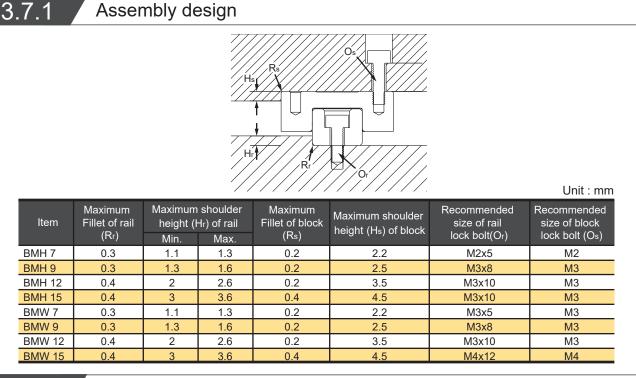
3.6 / Preload

ltem Class	Code	Preload	Description
No preload	Z0	0	The best running smoothness and minimum friction
Light preload	Z1	0~0.02C	Preloaded and has good running smoothness
Medium preload	Z2	0.02~0.08C	Higher preload and rigidity, but normal running smoothness

Standard

Ball Caged

Miniature


Cam Roller

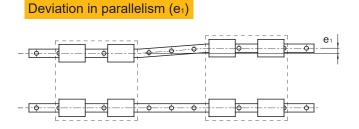
Round Shaft

Ball Screw

Support Unit

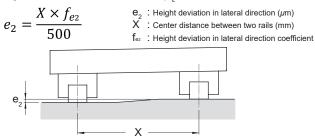
3.7 / Suggestion in Assembly

3.7.2


Recommended torque for mounting bolts of rail

When installing the rail, the locking force of the mounting bolts will affect the overall assembly accuracy. Therefore, the uniformity of the locking force is very important. It is recommended to tighten the mounting bolts with a torque wrench according to the torque values in the table on the right.

	Unit : kgf*cm
Nominal bolt model	Bolt torque
M2	3.3
M3	11.2
M4	26.5

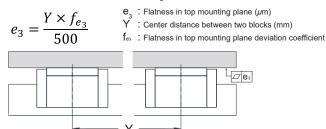

3.7.3

Tolerance of mounting surface

Height deviation in lateral direction(e₂)

Height deviation in lateral direction (e_2) can be calculated as follows:

			Unit : µm				
Nominal	Parallelism error tolerance for 2 axes(e1)						
size	Z2	Z1	Z0				
BMH 7	1	2	5				
BMH 9	2	3	6				
BMH 12	2	4	7				
BMH 15	4	7	10				
BMW 7	1	2	5				
BMW 9	2	3	6				
BMW 12	2	4	7				
BMW 15	4	7	10				


			Unit : µm				
Nominal	Height deviation in lateral direction coefficient (f_{e2})						
size	Z2	Z1	Z0				
BMH 7	36	60	120				
BMH 9	39	65	130				
BMH 12	42	70	140				
BMH 15	50	75	150				
BMW 7	36	60	120				
BMW 9	39	65	130				
BMW 12	42	70	140				
BMW 15	50	75	150				

Linear Guide

Self-lubricated Linear Bearing

Flatness in top mounting plane(e₃)

Flatness in top mounting plane (e_3) can be calculated as follows:

	Unit : μm
Nominal size	Flatness in top mounting plane deviation coefficient (f₀₃)
BMH 7	25
BMH 9	27
BMH 12	29
BMH 15	35
BMW 7	25
BMW 9	27
BMW 12	29
BMW 15	35

3.8 / Running resistance

The maximum running resistance value of the series is based on the validation result with no load and lubricant viscosity grade 460 under room temperature. The detailed data is shown in the table on the below:

.....

Standard

		Maximum running resistance (g)							
Nominal size	Block type	Stand	ard fro	nt seal	Low friction shield				
0120	.960	Z2	Z1	Z0	Z2	Z1	Z0		
	U0	300	170	100	270	140	70		
BMH 7	LU	300	170	100	270	140	70		
DMILO	U0	300	170	100	270	140	70		
BMH 9	LU	300	170	100	270	140	70		
	U0	310	180	110	280	150	80		
BMH 12	LU	310	180	110	280	150	80		
	U0	310	180	120	280	150	90		
BMH 15	LU	310	180	120	280	150	90		

Wide										
		Maximum running resistance (g)								
Nominal size	Block type	Stand	ard fror	nt seal	Low friction shield					
0120	., , , , , , , , , , , , , , , , , , ,	Z2	Z1	Z0	Z2	Z1	Z0			
	U0	350	200	100	320	170	70			
BMW 7	LU	350	200	100	320	170	70			
	U0	350	200	100	320	170	70			
BMW 9	LU	350	200	100	320	170	70			
	U0	460	250	110	430	220	80			
BMW 12	LU	460	250	110	430	220	80			
	U0	460	330	120	430	300	90			
BMW 15	LU	460	330	120	430	300	90			

3.9 /Lubrication

3.9.1 Factory pre-lubrication

The medical lubricant Klüber PARALIQ P460 is added to the inside of the BM block and the self-lubrication system. This lubricant complies with FDA's safety guidelines sec. 21 CFR 178.3570 regulations, and has passed NSF H1 level certification.

Grease re-lubrication 3.9.2 1 Lubricating oil can be injected into the block through the lubrication holes on both sides of the block by using a syringe, and the block must slide back and forth on the rail several times during lubrication to ensure sufficient lubrication inside the block. 2 Lubricition amount : Standard Wide Unit: mm³ Unit: mm³ Lubrication hole Nominal Nominal Amount Amount size size

BMW 7

BMW 9

BMW 12

BMW 15

60

90

140

200

Re-lubrication	intervals	recommendation

The relubrication interval will vary greatly due to application conditions (such as load, speed, ambient temperature, pollution... etc.). Generally, it is recommended to be at least every 1000km or every year (whichever comes first) must be relubricated.

50

70

90

150

Recommended lubricating oil : Klüber PARALIQ P 460

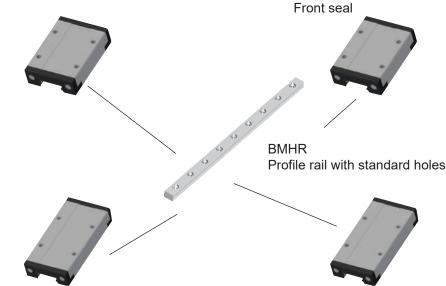
BMH 7

BMH 9

BMH 12

BMH 15

3



3.10 / Product overview

BMHC-U0-0

Standard type, Standard length, Low friction shield

BMHC-LU-0 Standard type, Extended length, Low friction shield

BMWC/BMWR Wide type 3.10.2

Wide type, Extended length, Low friction shield

BMWC-U0-0 BMWC-U0-S Wide type, Standard length, Low friction shield Wide type, Standard length, Front seal BMWR Size7 ,9 12: Profile rail with 1 row of standard holes Size 15 : Profile rail with 2 rows of standard holes BMWC-LU-0

BMHC-U0-S

BMHC-LU-S

Standard type, Extended length, Front seal

Front seal

Standard type, Standard length,

Linear Guide

Standard

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

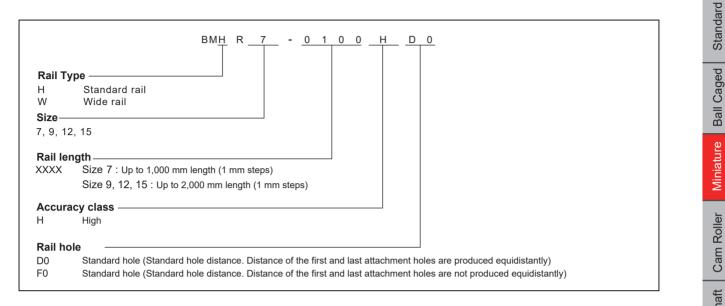
Support Unit

Ball Screw

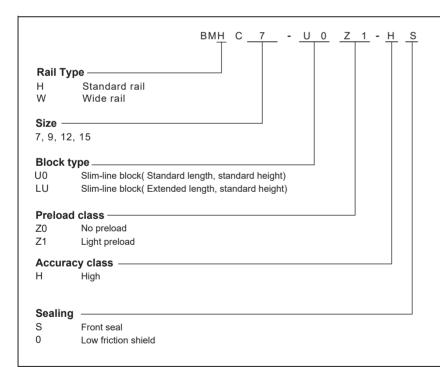
Self-Iubricated Linear Bearing

BMWC-LU-S Wide type, Extended length, Front seal

63

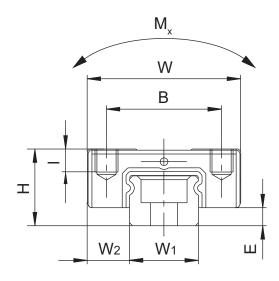

3.11 Ordering key of System

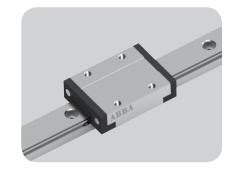
	$BMH \ S \ \underline{7} \ - \ \underbrace{U} \ 0 \ \underline{2} \ \underline{Z} \ \underline{1} \ - \ \underbrace{0} \ \underline{1} \ 0 \ \underline{0} $
Rail Ty	
Н	Standard rail
W	Wide rail
Size —	
7, 9, 12	15
Block t	/pe
U0 .	Slim-line block(Standard length, standard height)
LU	Slim-line block(Extended length, standard height)
Numbe	r of blocks per rail
1~9	1~9 blocks per rail
A~W	>9 blocks per rail (10=A, 11=B, 12=C)
Preload	class
Z0	No preload
Z1	Light preload
Rail len	gth
XXXX	Size 7 : Up to 1,000 mm length (1 mm steps)
	Size 9, 12, 15 : Up to 2,000 mm length (1 mm steps)
Accura	cy class —
Н	High
Р	Precision ¹⁾
Rail ho	e
D0	Standard hole (Standard hole distance. Distance of the first and last attachment holes are produced equidistantly)
F0	Standard hole (Standard hole distance. Distance of the first and last attachment holes are not produced equidistantly)
Sealing	
S	Front seal
0	Low friction shield
No. of F	Parallel Rails
00	Single rail
1/1/2~1/1/9	Parallel rails (W2 : 2 rails, W3 : 3 rails)


1) Available as system

3.12 / Ordering key of Rail

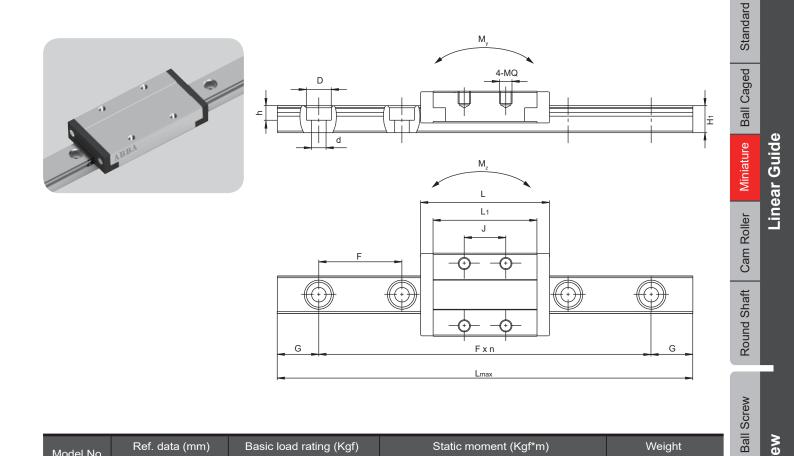
3.13 Ordering key of Block



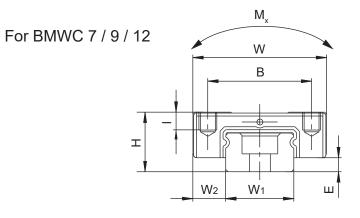

Self-lubricated Linear Bearing

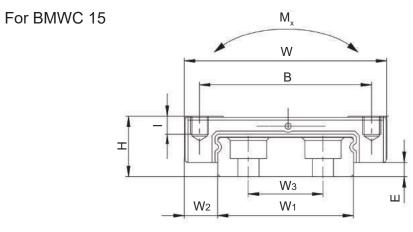
Support Unit

3.14 / Dimension of Linear Guide


3.14.1 BMHC-U0/LU Standard type

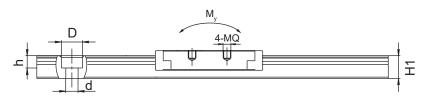
Model No.	Assembly (mm)				Block (mm)				Rail (mm)			
	н	W	W2	E	L	BxJ	MQ×I	L1	W1	H1	F	dxDxh
BMHC7U0 BMHC7LU	8	17	5	1.5	23.5 31.5	12x8 12x13	M2x2.5	18 26	7	4.8	15	2.5x4.5x2.5
BMHC9U0 BMHC9LU	10	20	5.5	2.35	31 40.5	15x10 15x16	M3x3	25 34.4	9	6.5	20	3.5x6x3.5
BMHC12U0 BMHC12LU	13	27	7.5	3.35	35 46.5	20x15 20x20	M3x3.5	29 40.5	12	8.8	25	3.5x6x4.5
BMHC15U0 BMHC15LU	16	32	8.5	4	44 62	25x20 25x25	M3x4	37 55	15	9.5	40	3.5x6x4.5

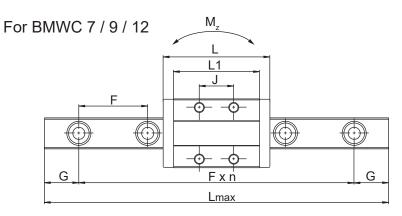


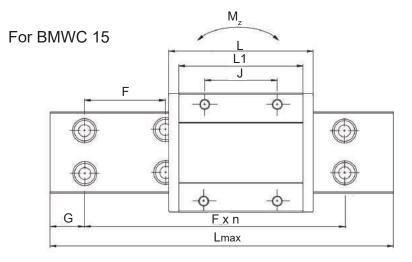

Model No.	Ref	. data (r	mm)	Basic load	rating (Kgf)	Sta	tic moment (Kgf	*m)	We	ight	Ball
	Lmax	Gmin	Gmax	(C)	(C0)	M×	My	Mz	Block (Kg)	Rail (Kg/m)	
BMHC7U0 BMHC7LU	1000	4.5	11	117 163	149 245	0.47 0.81	0.27 0.89	0.27 0.89	0.01 0.02	0.23	Init
BMHC9U0 BMHC9LU	2000	5	15	218 293	285 438	1.17 1.89	0.76 2.04	0.76 2.04	0.02 0.03	0.4	Support Unit
BMHC12U0 BMHC12LU	1 2000	5	20	321 456	397 642	2.19 3.66	1.19 3.40	1.19 3.40	0.04 0.06	0.75	S
BMHC15U0 BMHC15LU	2000	5	35	500 706	596 998	3.97 6.53	2.44 6.45	2.44 6.45	0.09 0.13	1.05 1.05	D
											Self-lubricated Linear Bearing

Ball Screw

3.14.2 BMWC-U0/LU Wide type






Model No.		Assemb	ly (mm)				В	lock (mm)		Rail (mm)			
	н	W	W2	W3	E	L	BxJ	MQ×I	L1	W1	H1	F	dxDxh
BMWC7U0 BMWC7LU	9	25	5.5	-	2	31 41.5	19x10 19x19	M3x3	25.5 36	14	5.2	30	3.5x6x3.5
BMWC9U0 BMWC9LU	12	30	6	-	2.5	39 50.5	21x12 23x24	M3x3	33 44.5	18	7	30	4.5x8x4.5
BMWC12U0 BMWC12LU	11	40	8	-	3	43.5 58	28x15 28x28	M3x3.5	37.5 52	24	8.5	40	4.5x8x4.5
BMWC15U0 BMWC15LU	16	60	9	23	4	55.5 74.5	45x20 45x35	M4x4.5	48.5 67.5	42	9.5	40	4.5x8x4.5

Model No.	Ref.	. data (r	nm)	Basic load	rating (Kgf)	Stat	ic moment (Kgf	*m)	Weight		
	Lmax	Gmin	Gmax	(C)	(C0)	M×	My	Mz	Block (Kg)	Rail (Kg/m)	
BMWC7U0 BMWC7LU	2000	5	25	157 213	224 352	1.50 2.34	0.65 1.61	0.65 1.61	0.02 0.03	0.54	
BMWC9U0 BMWC9LU	2000	5	25	277 366	413 596	3.69 5.27	1.76 3.68	1.76 3.68	0.05 0.07	0.94	
BMWC12U0 BMWC12LU	2000	6	34	398 546	540 846	7.04 9.87	2.91 5.90	2.91 5.90	0.09 0.12	1.53	
BMWC15U0 BMWC15LU	2000	6	34	642 841	866 1274	18.23 24.65	5.54 10.76	5.54 10.76	0.19 0.26	2.97	

Linear Guide

Standard

Ball Caged

Round Shaft Cam Roller Miniature

Ball Screw

Ball Screw

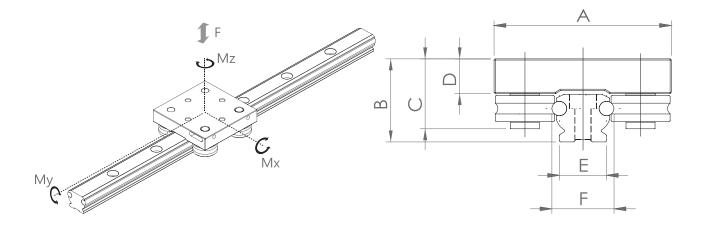
Support Unit

Self-lubricated Linear Bearing

Cam Roller Linear Guide

0


4.1 CRC Standard type


Ordering Key : <u>CRC25</u> X <u>0870</u> - <u>B2</u> (20,10)

1

Block type : CRC

- 2 Rail length : 870 mm
- 3 Number of blocks : 2
- 4 End distance of screw hole : 20, 10
 - (Evenly spaced on both end if not specific)

3

2

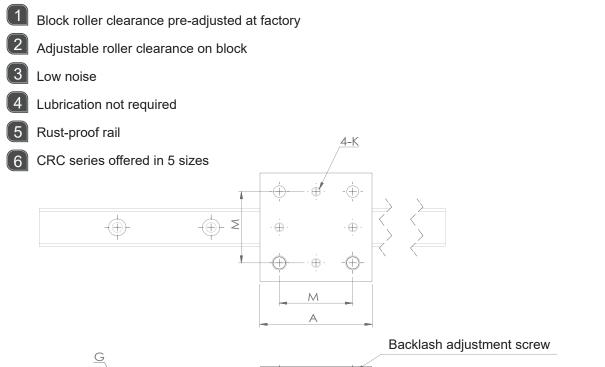
Model No.			Dimen	sions (m	ım)		Basic Load	Rating (kgf)	Static Moment Load (kgf-m)			
	А	В	С	D	E	F	С	Co	Mx	My	Mz	
CRC 20	54	23	20.5	10.8	17	21	72	70	3.6	2.4	3.4	
CRC 25	72	34	29.5	14.5	19	25	215	185	17.6	10.8	15.5	
CRC 32	80	35	29.5	14.5	25	32	215	185	23	14	19.8	
CRC32L	100	46	42	19.2	22	32	410	410	32	20	31.5	
CRC 42	110	46	42	19.2	28	42	410	410	45.8	29	45	

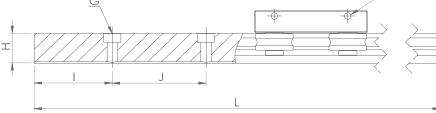
Ball Caged

Miniature

Cam Roller

Round Shaft


Ball Screw

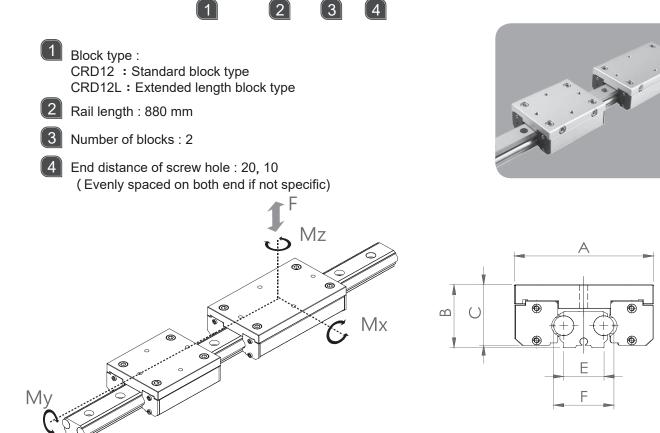

Support Unit

Ball Screw

Linear Guide

Features

Unit : mm


Model No.	Dimensions											
	G	Н		J	K	L	M					
CRC 20	ø4.5xø8x4.5dp	13.5	1/2J	60	M5	100-4000	36					
CRC 25	ø5.7xø10x6.5dp	20	1/2J	60	M6	100-4000	47					
CRC 32	ø6.6xø11.5x8dp	20	1/2J	60	M6	100-4000	54					
CRC32L	ø6.6xø10.5x8dp	24.8	1/2J	60	M8	100-4000	63					
CRC 42	ø9xø14x12dp	24.8	1/2J	80	M8	100-4000	73					

Note: I value will be 1/2 J or evenly spaced on both end if not specific.

Self-Iubricated Linear Bearing

4.2 CRD Dust-proof type

Ordering Key : <u>CRD12</u> X <u>0880</u> - <u>B2</u> (20,10)

Unit : mm

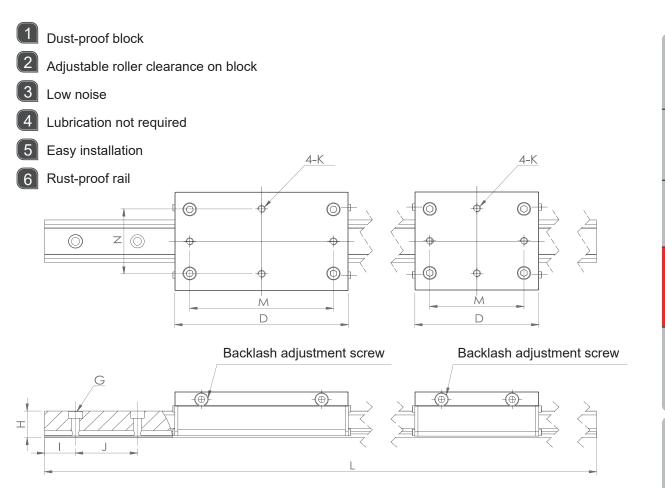
Model No.			Dimensions		
	А	В	С	E	F
CRD12	82	38.5	36.5	24	36
CRD12L	82	38.5	36.5	24	36

Ball Caged

Miniature

Cam Roller

Round Shaft


Ball Screw

Support Unit

Ball Screw

Linear Guide

Features

Unit : mm

Model No.		Dimensions											
	D	G	Н	I	J	K	L	М	Ν				
CRD12	100	ø7xø10x6	22	1/2J	50	M6	100~4000	76	54				
CRD12L	140	ø7xø10x6	22	1/2J	50	M6	100~4000	116	54				

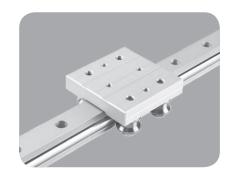
Note: I value will be 1/2 J or evenly spaced on both end if not specific.

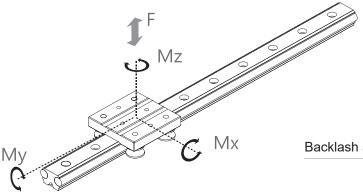
Model No.	Basic	Static	Moment (kgf-m)	Load	Weight			
	С	Co	Mx	My	Mz	Block (kg)	Rail (kg/m)	
CRD12	250	500	4	5.4	4.8	0.6	3	
CRD12L	250	500	7.4	5.4	8.8	0.8	3	

Self-Iubricated Linear Bearing

4.3 CRE Economic type

Ordering Key : CRE12 X 0880 - B2 (20,10)




Rail length : 880 mm

3 Number of blocks :2

End distance of screw hole : 20, 10 (Evenly spaced on both end if not specific)

 \square ഫ \bigcirc Е Backlash adjustment screw F

Unit : mm

Model No.		Dimensions									
	А	В	С	D	E	F					
CRE12	78	35.5	34	14.5	24	36					

Ball Caged

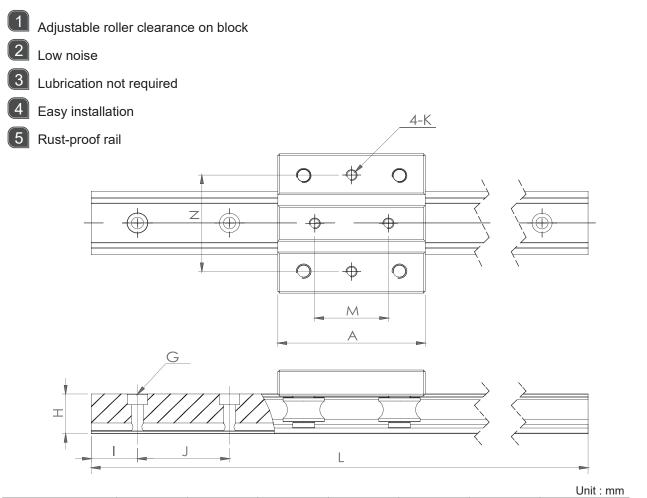
Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit


Self-Iubricated Linear Bearing

Other components

Ball Screw

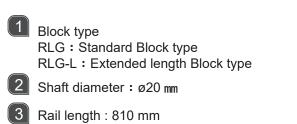
Linear Guide

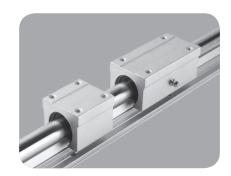
Features

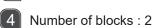
Madal Na		Dimensions										
Model No.	G	Н		J	K	L	М	N				
CRE12	ø7xø10x6	22	1/2J	50	M6	100-4000	40	54				

Note: I value will be 1/2 J or evenly spaced on both end if not specific.

Model No.	Basic	Static	Moment (kgf-m)	Load	Weight			
	С	Co	Mx	Мy	Mz	Block (kg)	Rail (kg/m)	
CRE12	200	400	3.6	4.9	4.3	0.35	3	

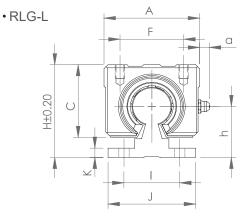

*


5.1 RLG Standard type


Ordering Key : <u>RLG</u> <u>20</u> X <u>0810</u> - <u>B2</u> (40,20)

2


3



End distance of screw hole : 40, 20 (Evenly spaced on both end if not specific)

5

4

Unit : mm

Model No.	Shaft Dia.					Dim	ensions					
Model No.	Shalt Dia.	А	а	В	С	F	G	Н	h	I	J	K
RLG10	Ø10	36		32	24	25	20	33	18	22	32	4
RLG10L	010	50	7.5	65	24	25	40	55	10	22	52	4
RLG12	Ø12	36		34	24	26	24	34	18.5	23	32	4
RLG12L	012	50	7.5	68	24	20	45	54	10.5	20	52	4
RLG13	Ø13	40		39	28	28	26	38	21	25	34	4.5
RLG13L	015	40	7.5	75	20	20	50	50	21	20	54	4.5
RLG16	Ø16	45		45	33	32	30	45	25	30	40	5
RLG16L	010	40	7.5	85		52	60	43	23	50	40	5
RLG20	Ø20	48		50	39	35	35	50	27	30	45	5
RLG20L	020	40	7.5	95	39	- 35	70	50	21	30	40	5
RLG25	and the second se			65	47	40	40	00	20	25		0
RLG25L	Ø25	60	7.5	130	47	40	90	60	33	35	55	6
RLG30	Ø30	70		70	56	50	50	70	37	40	60	7
RLG30L	030	70	7.5	140	- 50	50	100	70	37	40	60	
RLG35	Ø35	80		80	63	55	55	80	43	45	65	8
RLG40	Ø40	90		90	72	65	65	90	48	55	75	9
RLG50	Ø50	120		110	92	94	80	115	62	70	95	11

Ball Caged

Miniature

Cam Roller

Round Shaft

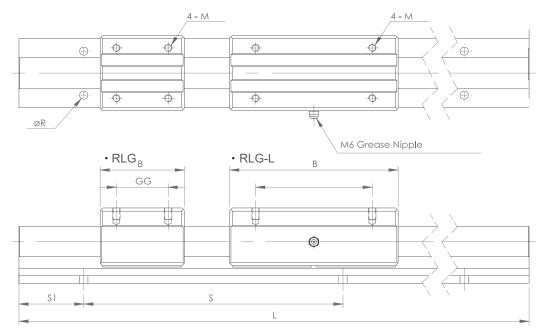
Ball Screw

Support Unit

Self-Iubricated Linear Bearing

Other components

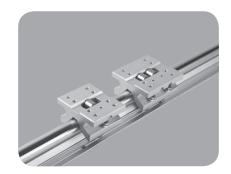
Ball Screw


Linear Guide

Features

- 1
 - Heat treated and hard chromium plated SUJ2 shaft

Shaft is fully supported to prevent unwanted shaft deflection in heavy load and long stroke conditions


3 Available in Standard, or Extended length block type

							Unit : mm
	Dimens	ions (mn	ו)		Bearing Model	Basic Load	Rating (kgf)
L	М	ØR	S	S1 *		С	Co
200-4000	M5	4.5	100		LM 10-OP	38	56
200-4000	1015	4.5	100			60	112
200-4000	M5	4.5	100		LM12-OP	52	80
200-4000	1015	4.5	100			83	160
200,2000	NAG	4.5	100			52	80
200-3000	M5	4.5	100		LM 13-OP	83	160
200 4000	ME	5.5	150		LM 16-OP	79	120
200-4000	M5	5.5	150			125	240
200-6000	M6	5.5	150	1/2 S	LM 20-OP	90	140
200-0000	IVIO	5.5	150			142	279
300-6000	M6	6.5	200		LM 25-OP	100	160
300-0000	IVIO	0.5	200			159	320
300-6000	M8	6.5	200		LM 30-OP	160	280
300-8000	IVIO	0.5	200			253	560
300-6000	M8	9	200		LM 35-OP	170	320
400-6000	M10	9	300		LM 40-OP	220	410
400-6000	M10	11	300		LM 50-OP	389	810

Note: S1 value will be 1/2 S or evenly spaced on both end if not specific.

5.2 RLR High impact type Ordering Key: RLR 20 X 0860 - B2 (40,20) 2 5 3 4 Block type RLR : Standard Block type RLR-L: Extended length, heavy load Block type 2 Shaft diameter : ø20 mm 3 Rail length : 860 mm 4 Number of blocks : 2 [5] End distance of screw hole : 40, 20 (Evenly spaced on both end if not specific) А F F1 H±0.20 (

Dimensions Model No. Shaft Dia. В С Е F F1 G А **RLR 20** 55 32 Ø20 70 41.6 8 50 27 51.6 27 30 RLR 20L 75 46 **RLR 25** 65 40 Ø25 83 49.6 9 35 63 63 33 35 RLR 25L 85 60 **RLR 30L** Ø30 95 100 59.5 12 73 40 73 72 37 40

ш

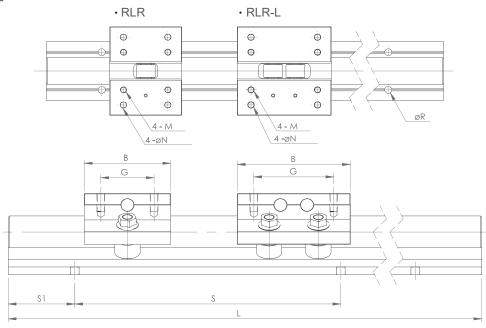
Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw


Support Unit

Ball Screw

Linear Guide

Features

- Heat treated and hard chromium plated SUJ2 shaft
- 2 Shaft is fully supported to prevent unwanted shaft deflection in heavy load and long stroke conditions
- 3 Available in Standard, or Extended length block type
- 4 Roller clearance adjustable on block
- 5 RLR series feature in high load capacity, low noise, and high impacts capability

Dimensions (mm)						Basic Load	Rating (kgf)		
J	К	L	М	ØN	ØR	S	S1 *	С	Co
45	5	300 - 6000	M5	4.3	3 5.5	200		230	150
45	5	300 - 8000	1015	4.5		200		460	300
55	6	300 - 6000	M6	5.5	65	200	1/2 S	350	270
55	0	300 - 8000	IVIO	5.5	6.5	200		700	540
60	7	300 - 6000	M8	6.5	6.5	200		1450	1100

Note: S1 value will be 1/2 S or evenly spaced on both end if not specific.

Self-Iubricated Linear Bearing

Ball Screw

6.1 Technological description of Ball Screws

6.1.1 Lead / Travel Accuracy

Accuracy

1

Lead accuracy of ABBA Ball screws (grade C0~C5) is specified in 4 basic terms (E, e, e_{300} , $e2\pi$). There are defined in Fig.6.1.1.1 Tolerance of deviation (± E) and variation (e) of accumlated reference travel are shown in Table 6.1.1.1~ 6.1.1.3

Accumulated travel deviations for grade C7 and C10 are specified only by the allowable value per 300mm measured within any portion of the thread length as e₃₀₀ of table 6.1.1.3 They are 0.05mm for C7 and 0.21mm for C10.

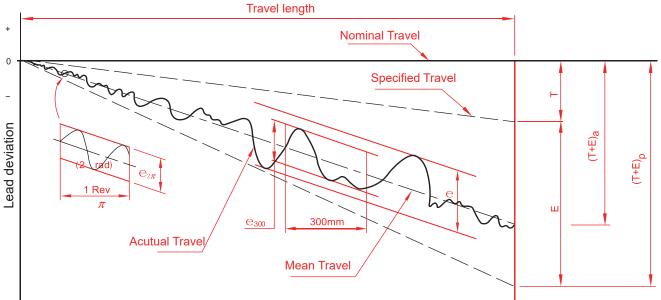


 Table 6.1.1.1 Definition of Terms of Lead Accuracy

T+E	Cumulative Traval lead	It's a straight line, it represents the tendency of actual cumulative lead. This is the data after laser detection calculated by the method of least squares.
Р		Allowable value
а		Actual measured value.
т	Travel Compensation	Travel compensation is the difference between specified and nominal travel within the useful travel. A slightly smaller value compared to nominal travel is often selected by the customer to compensate for an expected elongation caused by temperature rise or external load. Therefore "T" is usually a negative value. Note: If no compensation is needed, specified travel is the same as nominal travel.
E	Mean Travel Deviation	Mean Travel deviation is the difference between Mean Travel and Specified travel within travel length
е		Maximum width of variation over the travel length.
e 300	Travel	Actual width of variation for the length of 300mm taken anywhere within the travel length.
e₂π	Variations	Wobble error, actual width of variation for one revolution(2π radian)

Table 6.1.1.2 Mean Travel Deviation (± E) and Travel Variation (e) (JIS B 1192)

	Grade		С	0	С	1	С	2	C	3	С	5	C7	C10	ard
	Over	Incl.	±Ε	е	±Ε	е	±Ε	е	±Ε	е	±Ε	е	е	е	Standard
		100	3	3	3.5	5	5	7	8	8	18	18			S.
	100	200	3.5	3	4.5	5	7	7	10	8	20	18			ged
	200	315	4	3.5	6	5	8	7	12	8	23	18			Ball Caged
	315	400	5	3.5	7	5	9	7	13	10	25	20			Ba
	400	500	6	4	8	5	10	7	15	10	27	20			ure
	500	630	6	4	9	6	11	8	16	12	30	23			Miniature
um)	630	800	7	5	10	7	13	9	18	13	35	25			Σ
th(n	800	1000	8	6	11	8	15	10	21	15	40	27			ller
sngt	1000	1250	9	6	13	9	18	11	24	16	46	30			Cam Roller
I Le	1250	1600	11	7	15	10	21	13	29	18	54	35	±50 300mm	±210 300mm	Can
Travel Length(mm)	1600	2000			18	11	25	15	35	21	65	40		, coolinii	ff
Ľ	2000	2500			22	13	30	18	41	24	77	46			Round Shaft
	2500	3150			26	15	36	21	50	29	93	54			pund
	3150	4000			32	18	44	25	60	35	115	65			Ř
	4000	5000					52	30	72	41	140	77			
	5000	6300					65	36	90	50	170	93			rew
	6300	8000							110	62	210	115			Ball Screw
	8000	10000									260	140			Ba
	10000	12500									320	170			

Table 6.1.1.3 Variation per 300mm (e300) and Wobble Error (e2 π) (JIS B 1192)

							Unit : µm
Grade	C0	C1	C2	C3	C5	C7	C10
e 300	3.5	5	7	8	18	50	210
e ₂ π	3	4	4	6	8		

Ball Screw

Support Unit

Linear Guide

6.1.2 Backlash in the Axial direction (customer demand)

6.1.2.1 Maximum Backlash in the Axial direction (P0)			6.1.2.2 Maximum Backlash in the Axial direction (P1)			
Unit : mm				Unit : mm		
Maximum Backlash in the Axial direction				Maximum Backlash	in the Axial direction	
Screw Shaft OD	Maximum Backlash in the Axial direction of Rolled Ball Screw			Screw Shaft OD	Maximum Backlash in the Axial direction of Rolled Ball Screw	
4mm~14mm	0.05			4mm~80mm	0	
15mm~50mm	0.08					
50mm~80mm	0.12					

The preload grade of the axial clearance of the standard ball screw

6.1.3 Definition of the geometric tolerance of the ball screw

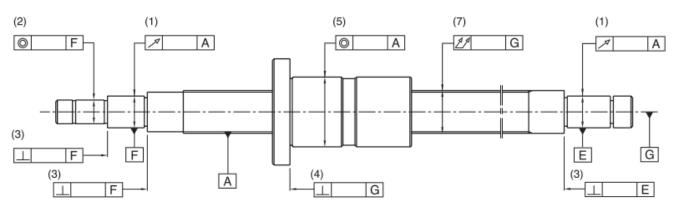
To use a ball screw properly dimensional accuracy and tolerances are most important

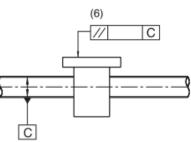
1 With respect to the axis A of the thread groove surface, the radial runout value of the screw support part is measured.

2 Measure the coaxiality of the part mounting part with respect to the axis F of the screw support part.

3 The right angle of the end surface of the supporting part is measured with respect to the axis E of the supporting part of the screw shaft.

4 With respect to the screw axis G, measure the right angle of the reference surface of the nut or the mounting surface of the flange.

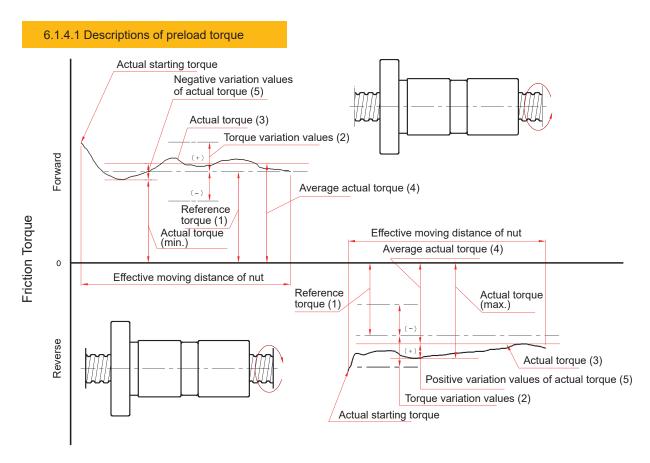

5 With respect to the screw axis A, the coaxiality of the outer periphery of the nut (cylindrical type) is measured.


6 Measure the parallelism of the outer edge of the nut (flat-head type mounting surface) with respect to the screw axis C.

The total yaw value in the radial direction of the screw shaft axis.

The accuracy items mentioned here are based on JIS B1192~1997. .

Mounting accuracy and tolerances



6.1.4 Preload torque

- Terms in relation to the preload torque generated during the rotation of the preload ball screws are shown in 6.1.4.1.
- Permissible ranges of torque variation rates is shown in 6.1.4.2.

Glossary

(1) Preload

The stress generated inside the screws when inserting a set of steel balls of one gage (approximately 2μ) larger into the nut or using them on the 2 nuts which exercise mutual displacements along the screws axis in order to eliminate the gaps of the screw or upgrade the rigidity of the screw.

(2) Preload dynamic torque

The dynamic torque required for continously rotating the screws shaft or the nuts under unload condition after the specified preload has been applied upon the ball screws.

(3) Reference

The targeted preload dynamic torque.

(4) Torque variation values

The variation values of the targeted preload torque variation rates are specified generally based on JIS standard as.

(5) Torque variation rate

The rate of variation values in relation to the reference torque.

(6) Actual torque

The actually measured preload dynamic torque of the ball screws.

(7) Average actual torque

The arithmetic average of the maximal and minimal actual torque values measured when the nuts are exercising reciprocating movements.

(8) Actual torque variation values

The maximum variation values measured within the effective length of the threads when the nuts are exercising reciprocating movements, the positive or negative values relative to the actual torque are adopted.

(9) Actual torque variation rate

The rate of actual torque variation values in relation to the average actual torque.

Standard

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit

Self-Iubricated Linear Bearing

6.1.4.2 Permissible ranges of torque variation rates

		Effective threading length (mm)						
Refe torqu	rence	Belov	v 4000	4000~10000				
kgf •		Slenderness 1 : below 40	Slenderness 1 : 40 ~ 1 : 60	_				
		Grade	Grade	Grade				
Over	Incl.	C5	C5	C5				
2	4	±50%	±60%	-				
4	6	±40%	±45%	-				
6	10	±35%	±40%	±45%				
10	25	±30%	±35%	±40%				
25	63	±25%	±30%	±35%				
63	100	±20%	±25%	±30%				

Note:

1. Slenderness is the value of dividing the screws shaft outside diameter with the screws shaft threading length.

2. For reference torque less than 2 kgf • cm, ABBA specifications will apply.

Calculation of reference torque Tp

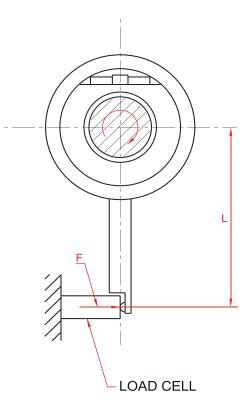
The formula for computing reference torque (kgf $\boldsymbol{\cdot}$ cm) of the ball screws is given in following :

Tp = 0.05
$$(\tan \beta)^{-0.5} \cdot \frac{\operatorname{Fao} \cdot \ell}{2\pi}$$

Where, Fao : Preload (Kgf)

eta : Lead angle

ℓ : Lead (cm)

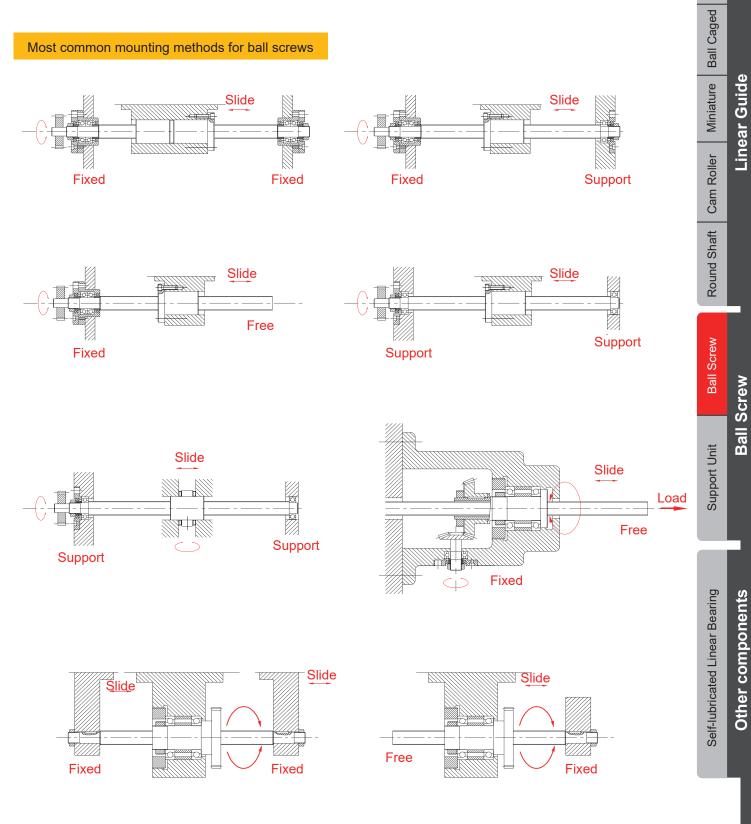

Measurement conditions

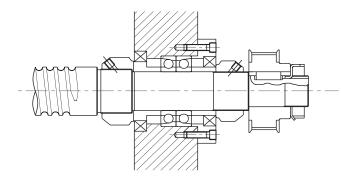
The preload dynamic torque Tp is determined first by adopting the following measurement conditions together with the method illustrated in the right diagram for measuring the force F needed to rotate the screws shaft without bringing the nuts to rotate along with the shaft after the screws shaft has started rotating, then multiplying the measured value of F with the arm of force L, the product is Tp.

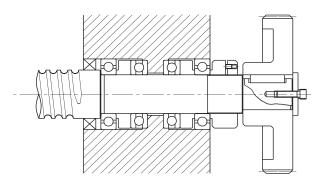
Measure conditions

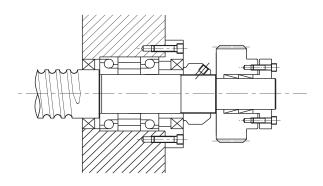
(1) Measurement is executed under the condition of not attaching with scraper.

(2) The rotating speed during measurement maintains at 100 rpm.(3) According to JSK 2001 (industrial lubrication oil viscosity classificaiton standards), the lubrication oil used should be in compliance with ISO VG68.


Preload dynamic torque measuring method

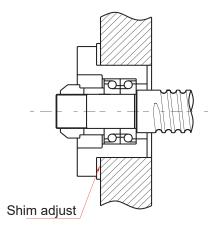

6.2 Screw shaft design

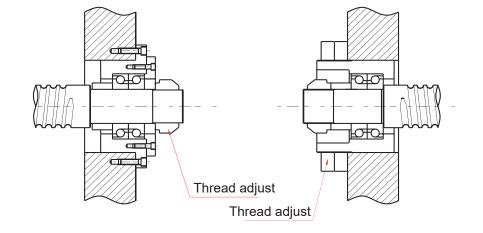

6.2.1 Mounting methods


Both the critical speed and column bucking load depend upon the method of mounting and the unsupported length of the shaft, the most common mounting methods for ball screws are shown below.



Most machines mounting methods for ball screws





Most common mounting methods for ball screws

Buckling load

Buckling load

6.2.2

The safety of the screw shaft against buckling needs to be checked when the shaft is expected to receive buckling loads. The diagram below summarizes the allowable compressive load for buckling for each nominal outside diameter of screw shaft. (Calculation with the equation shown right when the nominal outside diameter of the screw shaft exceed 125mm.) Select the graduation of allowable axial load according to the method of ball screw support.

Allowable tensile compressive stress

When the mounting distance is short, please check the following two items which are irrelevant to the mounting method.

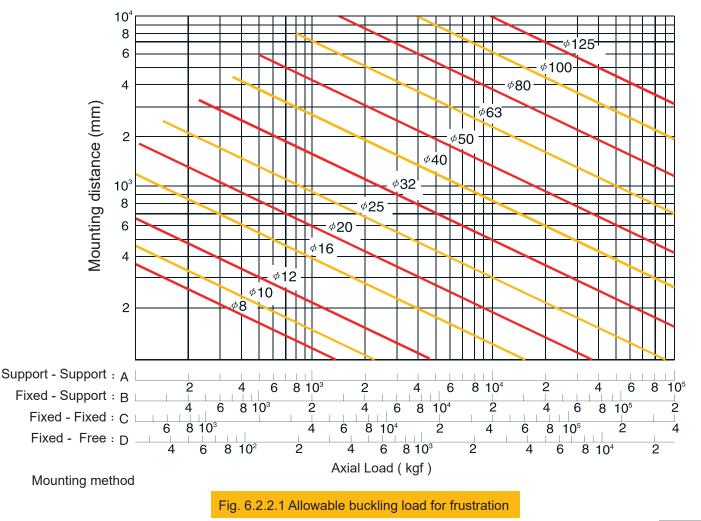
- Check the allowable tensile / buckling load (the formula shown below)
- Allowable load of the ball groove

$$P = \sigma A = 11.8 dr^2$$
 (kgf)

Where, $P = \sigma \cdot A = \sigma \cdot \pi \cdot dr^2/4$

- σ : Allowable tensile compressive stress (kgf $/ mm^2$)
- A : Sectional area (mm²) of screw shaft root bottom diameter
- dr : Screw shaft root diameter (mm)

$$\mathsf{P} = \alpha \times \frac{\mathsf{N}\pi^2 \mathsf{E}}{\mathsf{L}^2} = \mathsf{m} \frac{\mathsf{d}\mathsf{r}^4}{\mathsf{L}^2} \times 10^3$$


Where,

- α : Safety factor (0.5)
- E: Vertical elastic modules ($E = 2.1 \times 10^4 \text{kgf/mm}^2$)
- I : Min. secondary moment of screw shaft sectional area

 $I = \frac{\pi \, dr^4}{64 \, \mathrm{mm}^4}$

- dr · Screw shaft root diameter (mm)
- L : Mounting distance (mm)
- m N : Coefficient determined from mounting method of ball screw

Support - Support	m=5.1	(N=1)
Fixed - Support	m=10.2	(N=2)
Fixed - Fixed	m=20.3	(N=4)
Fixed - Free	m = 1.3	(N=1/4)

Standard

Screw

Ball

Support Unit

93

Self-lubricated Linear Bearing

Other components

6.2.3

Allowable rotation

Critical speed

It is necessary to check if the Ball Screw rotation speed is resonant with the natural frequency of the screw shaft. ABBA has determined 80% or less of this critical speed as an allowable rotation speed. The diagram below summarizes the allowable rotation speed of shaft nominal diameters up to outside diameter of the screw shaft exceeds 125mm.) Select the graduation of allowable rotation speed according to the method of supporting the Ball Screw.

Where the working rotation speed presents a problem in terms of critical speed, it would be best to provide an intermediate support to increase the natural frequency of the screw shaft.

dm.n value

The allowable rotation speed is regulated also by the dm.n value (dm: diameter of central circle of steel ball, n: revolution speed rpm) which expresses the peripheral speed.

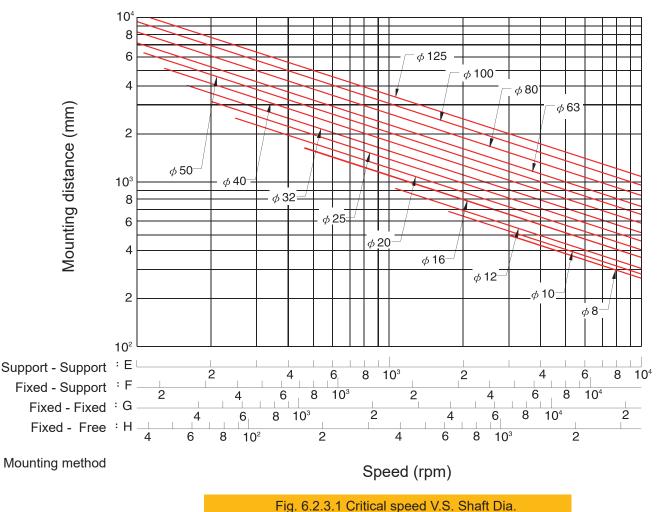
Generally;

For general industry (Ground) dm.n≦50,000 High lead seires dm.n \leq 130,000

Product exceeding the above limits can be produced, please contact ABBA.

$$n = \alpha \times \frac{60\lambda^2}{2\pi L^2} \sqrt{\frac{E Ig}{\gamma A}} = f \frac{dr}{L^2} \times 10^7 (rpm)$$

Where,


n : Allowable rotation speed (rpm)

- α : Safety factor (0.8)
- E: Vertical elastic modules ($E = 2.1 \times 10^4 \text{kgf/mm}^2$)
- I : Min. secondary moment of screw shaft sectional area $\pi\,{
 m dr}^4$ $1 = \frac{n \, \mathrm{Gr}}{64 \, \mathrm{mm}^4}$

dr : Screw shaft root diameter (mm)

- g : Acceleration of gravity ($g = 9.8 \times 10^3$ mm / s^2)
- r : Density ($r = 7.8 \times 10^{-6} \text{ kgf} / \text{mm}^3$)
- A : Screw shaft sectional area ($A = \pi dr^2 / 4 mm^2$)
- L : Mounting distance (mm)
- $f \sim \lambda$: Coefficient determined from the Ball Screw mounting method . .

Support - Support	f = 9.7	$(\lambda = \pi)$
Fixed - Support	f = 15.1	(<i>π</i> = 3.927)
Fixed - Fixed	f=21.9	(<i>π</i> = 4.730)
Fixed - Free	f = 3.4	$(\pi = 1.875)$

6.3 / Nut design

6.3.1 Selection of nut

The mounting method is an important item when selecting the appropriate Ball Screw specifications. The following are installation examples. When the conditions of use need to be judged under stricter conditions or whenjudgment conditions are unknown due to special mounting method is used , please contact ABBA.

1 Series

When making selection of series, please take into consideration of demanded accuracy, intended delivery time, dimensions (the outside diameter of the screw, ratio of lead / the outside diameter of the screw), preload load, etc.

2 Circulation type

Selection of circulation type; please focus on the economy of space for the nut installation portion.

- (a) External circulation type
 - Economy
 - Suitable for mass production
 - Applicable to those with larger lead / the outside diameter of the screw
- (b) Internal circulation type
 - With nuts of finely crafted outside diameter (occupying small space)
 - Applicable to those with smaller lead / the outside diameter of the screw
- (C) High lead type
 - High Speed, High DN Value
 - Low Noise, Environmental protection
 - Small size, Space saving

3 Number of loop circuits

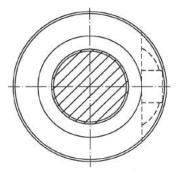
Performance and life of service should be considered when selecting number of loop circuits.

Shape of flanges

Please make selection based on the available space for the installation of nuts.

5 Oil hole

Oil holes are provided for the precision Ball Screws, please use them during machine assembling and regular furnishing.


6.3.1.1 External ball circulation nuts

Feature

Offers smoother ball running

Offers better solution and quality for long lead or large diameter Ball Screws

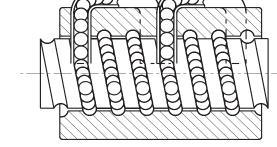
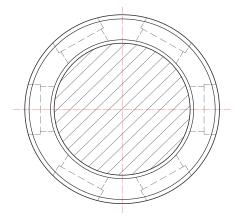


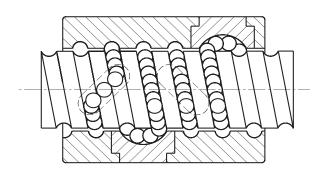
Fig. 6.3.1.1 Immersion type

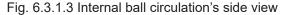
Standard

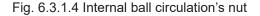
Ball Screw

Support Unit


Self-lubricated Linear Bearing


6.3.1.2 Internal ball circulation nuts


Feature


The advantage of internal ball circulation nut is that the outer diameter is smaller than that of external ball circulation nut (Fig.6.3.1.3). Hence it is suitable for the machine with limit space for Ball Screw installation.

It is strictly required that there is at least one end of screw shaft with complete threads. Also the rest area next to this complete thread must be with smaller diameter than the nominal diameter of the screw shaft. Above are required for easy assembling the ball nut onto the screw shaft.

6.3.1.3 High lead Ball Screws

Feature

It is important for a high lead Ball Screw to be with characteristics of high rigidity, low noise and thermal control. ABBA designs and treatments are taken for following:

1 High DN value

• The DN value can be 130,000 in normal case. For some special cases, for example in a fixed ends case, the DN value can be as high as 140,000. Please contact our engineers for this special application.

2 High speed

 ABBA high speed Ball Screws provide 100 m/min and even higher traverse speed for machine tools for high performance cutting.

3 High rigidity

- Both the screw and ball nut are surface hardened to a specific hardness and case depth to maintain high rigidity and durability.
- Multiple thread starts are available to make more steel balls loaded in the ball nut for higher rigidity and durability.

4 Low noise

- Special design of ball circulation tubes (patent pending) offer smooth ball circulation inside the ball nut. It also makes safe ball fast running into the tubes without damaging the tubes.
- Accurate ball circle diameter (BCD) through whole threads for consistent drag torque and low noise.

Low noise circulation's nut

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit

Self-lubricated Linear Bearing

Linear Guide

6.3.2 Axial Rigidity

Excessively weak rigidity of the screw's peripheral structure is one of the primary causes that result in lost motion. Therefore in order to achieve excellent positioning accuracy for the precision machines such as NC working machine, etc., axial rigidity balance as well as torsional rigidity for the parts at various portions of the transmission screw have to be taken into consideration at time of designing.

Static rigidity K

The axial elastic deformation and rigidity of the transmission screw system can be determined from the formula below.

$$K = \frac{P}{e} (kgf/\mu m)$$

- P: Axial load borne by the transmission screw system (kgf)
- e: Axial flexural displacement (mm)

$$\frac{1}{K} = \frac{1}{K_{S}} + \frac{1}{K_{N}} + \frac{1}{K_{B}} + \frac{1}{K_{H}} (mm / kgf)$$

- Ks: Axial rigidity of screw shaft (1)
- K_N : Axial rigidity of nut (2)
- K_B : Axial rigidity of bracing shaft (3)
- $K_{\rm H}$: Axial rigidity of installation portions of nuts and bearings (4)
- (1) Axial rigidity Ks and displacement $\delta_{\rm S}$ of screw shaft

$$K_{s} = \frac{P}{\delta_{s}} (kgf / \mu m)$$
$$P: \text{ Axial load (kgf)}$$

For places of Fixed - Fixed installation

$$\delta_{sF} = \frac{PL}{4AE} (mm)$$

For places other than Fixed - Fixed installation

$$\delta_{ss} = \frac{PL_o}{AE}$$
 (mm)

 $\delta_{ss} = 4 \delta_{sF}$

- $\sigma_{\mbox{\tiny SF}}$: Direction displacement at places of fixed-fixed installation
- $\delta_{\rm SS}\,$: Direction displacement at places other than fixed-fixed installation
 - A : Cross-sectional area of the screw shaft tooth root diameter (mm 2)
 - E : Longitudinal elastic modulus $(2.1 \times 10^4 kg f\,/mm^2)$
 - L : Distance between installations (mm)
 - L₀ : Distance between load applying points (mm)

(2) Axial rigidity K_N and displacement δ_N of nut

$$K_{N} = \frac{1}{\sigma_{s}} (\text{kgf}/\mu\text{m})$$

(a) In case of single nut

$$S_{\rm NS} = \frac{K}{\sin\beta} \left(\frac{Q^2}{d} \right)^{1/3} \times \frac{1}{\zeta} (\mu m)$$

$$Q = \frac{r}{n \cdot \sin\beta} \quad (\text{kgf})$$

$$n = \frac{D_0 \pi m}{d} (each)$$

- Q: Load of one steel ball (kgf)
- n : Number of steel ball
- k~:~Constant determined based on material, shape, dimensions $k \doteq~5.7 \times 10^4$
- β : Angle of contact (45°)
- P: Axial load (kgf)
- d: Steel ball diameter (mm)
- ζ : Accuracy, internal structure coefficient
- m : Effective number of balls
- $D_{\rm O}$: Steel ball center diameter (mm)
- ℓ: Lead (mm)
- α : Lead angle

$$\mathsf{D}_{\mathsf{O}} = \frac{\ell}{\tan \alpha \cdot \pi}$$

(b) In case of double nuts

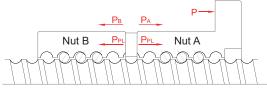


Fig. 6.3.2.1 Preloaded for the double nuts

When an axial load P of approximately 3 times of the preload load P_{PL} is exerted, for the purpose of eliminating the preload PPL on nut B, please set the preload load P_{PL} at no more than 1/3 of the maximal axial load (0.25 Ca should be taken as the standard maximal preload load). With respect to the displacement value, it should be of 1/2 of the single nut displacement when axial load is 3 times of the preload.

$$K_{N} = \frac{P}{\delta_{NW}} = \frac{3P_{PL}}{\delta_{NS}/2} = \frac{6P_{PL}}{\delta_{NS}} (kgf/mm)$$

 δ_{NS} : Displacement of single nut (mm)

 δ_{NW} : Displacement of double nuts (mm)

(Explanation of the rigidity of double nuts)

As shown in diagram Fig. 6.3.2.1 and 6.3.2.2, when a preload PPL is applied on the 2 nuts A, B, both nuts A & B would produce flexural deformations that will reach point X. If an external force P is exerted from here, nut A would move from point X to point X1, while nut B would move from X to X2. Then, based on the computing formula for displacement δ NS of the single nut, we can obtain:

 $\delta_0 = a P_{PL}^{2_{/3}}$

While displacements of nuts A & B are

$$\delta_A = a P_{PL}^{2/3}$$

since displacements of nuts A & B generated due to exertion of external force P are equal, therefore

$$\delta_{\mathsf{A}} - \delta_{\mathsf{O}} = \delta_{\mathsf{O}} - \delta_{\mathsf{O}}$$

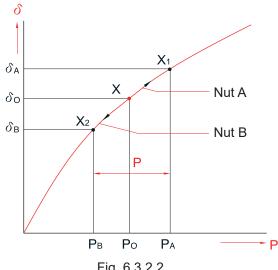
or if P is the only external force P that exerts on nuts A, B, if PA increases

 $P_A - P_B = P$ $\delta_{B} = 0$

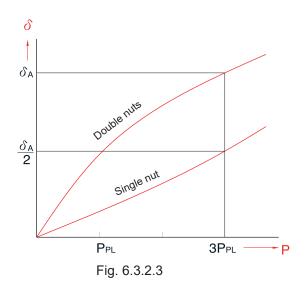
for preventing the external force applied on nut B being absorbed by nut A thus decreasing, so

When
$$\delta B = 0$$

 $aP_{A}^{2_{1_{3}}} - aP_{PL}^{2_{1_{3}}} = aP_{PL}^{2_{1_{3}}}$ D^{2/3} OD^{2/3}


$$P_A = 2P_{PL}$$

 $P_A = \sqrt{8} P_{PL} = 3P_{PL}$


or based on $\delta_A - \delta_0 = \delta_0$

$$\delta \circ = \frac{\delta_A}{2}$$

thus it can also be judged from Fig. 6.3.2.3 that, when axial load is 3 times of preload laod, for a single nut with 1/2 displacement, the rigidity is 2 times as high.

(3) Axial rigidity K_B and displacement δ_B of bracing shaft

$$K_{B} = \frac{P}{\delta_{B}} (kgf/mm)$$

The rigidity of the assembled diagonal thrust ball bearing that is used as the bracing bearing for the Ball Screw and is widely utilized in the field of precision machines can be found from the following formula.

$$\delta_{B} = \frac{2}{\sin\beta} \left(\frac{Q^{2}}{d}\right)^{1/3}$$
$$Q = \frac{P}{n \cdot \sin\beta} (kgf)$$

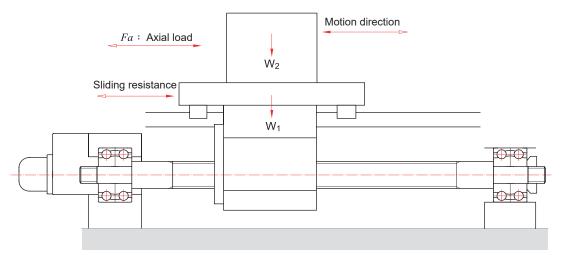
- Q: Load of one steel ball (kgf)
- β : Angle of contact (45°)
- d: Steel ball diameter (mm)
- ℓ_a : Effective distance of scroll
- P: Axial load (kgf)
- n : Number of steel ball
- (4) Axial rigidity K_H and displacement $\delta_{\rm H}$ of installation portions of nuts and bearings. In early stage of machine development, special attentions should be paid to the requirement of high rigidity for the installation portion.

$$K_{H} = \frac{P}{\delta_{H}}$$
 (kgf/mm)

Ball Caged

Miniature

Cam Roller


Round Shaft

Ball Screw

Support Unit

Linear Guide

6.3.2.1 Horizontal reciprocating moving mechanism

Horizontal reciprocating moving mechanism

For reciprocal operation to move work horizontally (back and forth) in an conveyance system, the axial load (Fa) can be gotten using the following equations:

Acceleration (leftward) $Fa_1 = \mu \times mg + f + ma$ Constant speed (leftward) $Fa_2 = \mu \times mg + f$ Deceleration (leftward) $Fa_3 = \mu \times mg + f - ma$ Acceleration (rightward) $Fa_4 = -\mu \times mg - f - ma$ Constant speed (rightward) $Fa_5 = -\mu \times mg - f$ Deceleration (rightward) $Fa_6 = -\mu \times mg - f$

6.3.2.2 Vertital reciprocating moving mechanism

For reciprocal operation to move work vertically (back and forth) in an conveyance system, the axial load (Fa) can be gotten using the following equations:

Acceleration (upward)	$Fa_1 = mg + f + ma$
Constant speed (upward)	$Fa_2 = mg + f$
Deceleration (upward)	$Fa_3 = mg + f - ma$
Acceleration (downward)	$Fa_4 = mg - f - ma$
Constant speed (downward)	$Fa_5 = mg - f$
Deceleration (downward)	$Fa_6 = mg - f + ma$

Here

$$a : \text{Acceleration} \\ a = \underbrace{\frac{V_{\text{max}}}{t_a}}_{t_a} \underbrace{V_{\text{max}} : \text{Rapid feed speed}}_{t_a} : \text{Acceleration time} \\ m : \text{Total weight (table weight + work piece weight)}$$

- *m*: Total weight (table weight + work piece we
 μ: Sliding surface friction coefficient
- *f* : Non-load resistance

Fa: Axial load

Vertital reciprocating moving mechanism

Here a : /

$$a = \frac{V_{\max}}{t}$$
 V_{\max} : Rapid feed speed
 t : Acceleration time

- m: Total weight (table weight + work piece weight)
- $\mu~$: Sliding surface friction coefficient
- f : Non-load resistance

Ball Screw

Self-Iubricated Linear Bearing

6.4 / Preload and effect

6.4.1 Ball Screw's preload and effect

In order to get high positioning accuracy, there are two ways to reach it. One is commonly known as to clear axial play to zero. The other one is to increase Ball Screw rigidity to reduce elastic deformation while taking axial load. Both two ways are done by preloading.

Methods of preloading

a. Double-nut method:

A spacer inserted between two nuts exerts a preload. There are two ways for it.

One is illustrated in Fig. 6.4.1.1 That is to use a spacer with thickness complies with required magnitude of preload. The spacer makes the gap between Nut A and B to be bigger, hence to produce a tension force on Nut A and B. it is called "extensive preload".

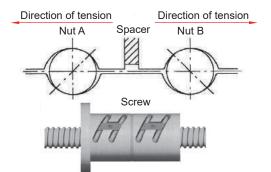


Fig. 6.4.1.1 Extensive preload

Relation between preload force and elastic deformation

Fig. 6.4.1.3 Nuts A and B are assembled with preloading spacer. The preload forces on Nut A and B are F_{ao} , but with reversed direction. The elastic in Fig. 6.4.1.4 deformation on both Nuts are δ_{ao} .

 $\delta_{A} = \delta_{a0} + \delta_{a1}$ $\delta_{B} = \delta_{a0} - \delta_{a1}$

The load in nut A and nut B are:

 $F_A = F_{ao} + F_a - F_a' = F_a + F_p$ $F_B = F_{ao} - F_a' = F_p$ **Note:** F_A and F_B have opposite directions

- b. Single-nut method:
 - As that illustrated on Fig. 6.4.1.2 using oversize balls onto the space between Ball nut and screw to get required preload. The balls shall make four-point contact with grooves of Ball nut and screw.

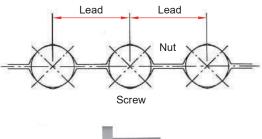


Fig. 6.4.1.2 Four point contact preload

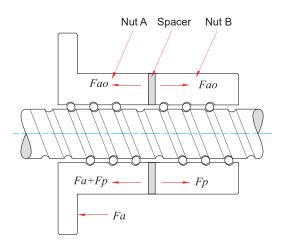


Fig. 6.4.1.3 Double-nut positioning preload

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit

Self-lubricated Linear Bearing

Linear Guide

It means F_a is offset with an amount F_a' because of the deformation of Nut B decreases. As a result, the elastic deformation of Nut A is reduced. This effect shall be continued until the deformation of Nut B becomes zero, that is, until the elastic deformation δ_{al} caused by the external axial force equals δ_{a0} , and the preload force applied to Nut B is completely released. The formula related the external axial force and elastic deformation is

$$\delta_{a0} = K \times Fao^{2/3} \text{ and } 2\delta_{a0} = K \times F_1^{2/3}$$
$$(F_1 / Fao)^2 = (2\delta_{a0} / \delta_{a0}) = 2$$
$$F_1 = 2.8Fao = 3Fao$$

Therefore, the preload amount of a Ball Screw is recommended to set as 1/3 of its axial load. Too much preload for a Ball Screw shall cause temperature raise and badly affect its life. However, taking the life and efficiency into consideration, the maximum preload amount of Ball Screw is commonly set to be 10% of its rated basic dynamic load.

Shown on Fig. 6.4.1.5 with the axial load to be three times as the preload, the elastic displacement for the non-preloaded ball nut is two times as that of the preloaded nut.

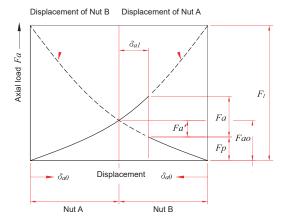


Fig. 6.4.1.4 Positioning preload diagram

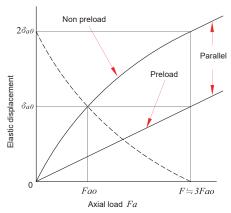


Fig. 6.4.1.5 Elastic displacement curve

6.4.2 Positioning accuracy

6.4.2.1 Causes of error in positioning accuracy

Lead error and rigidity of feed system are common causes of feed accuracy error. Other causes like thermal deformation and feed system assembly are also playing important roles in feed accuracy.

6.4.2.2 Considering thermal displacement

If the screw-shaft temperature increases during operation, the heat elongates the screw shaft, thereby reducing the positioning accuracy. Expansion and shrinkage of a screw shaft due to heat can be calculated using equation as below.

 $\Delta \mathbf{L}_{\theta} = \rho \cdot \theta \cdot L$

Here

- ΔL_{θ} : Thermal displacement (µm)
- ρ : Thermal-expansion coefficient (12µm/m°C)
- θ : Screw-shaft temperature change (°C)
- L: Ball screw length (mm)

That is to say, an increase in the screw shaft temperature of 1 expands the shaft by 12µm per meter. The higher the Ball Screw speed, the greater the heat generation. Thus, temperature increases reduce positioning accuracy. Where high accuracy. Where high accuracy is required, anti-temperature- elevation measures must be provided as follows:

Note: refer to Appendix (2) for examples of Ball Screws classes for different uses.

(1) To control temperature :

- Selecting appropriate preload
- Selecting correct and appropriate lubricant
- Selecting larger lead for Ball Screw and decrease the rotation speed

(2) Compulsory cooling:

- Ball Screw with hollow cooling
- Lubrication liquid or cooling air can be used to cool down external surface of Ball Screw.

(3) To keep off effect upon temperature raise:

- Set a negative cumulative lead target value for the Ball ScrewWarm up the machine to stable machine's operating tempera-
- Pretension by using on Ball Screw while installing onto the machine
- Positioning by closed loop

Ball Screw

6.5 Life

Life of the Ball Screw 6.5.1

Even though the Ball Screw has been used with correct manner, it shall naturally be worn out and can no longer be used for a specified period. its life is defined by the period from starting use to ending use caused by nature fail.

a. Fatigue life - Time period for surface flaking off happened either on balls or on thread grooves. b. Accuracy life - Time period for serious loosing of accuracy caused by wearing happened on thread groove surface, hence to make Ball Screw can no longer be used.

6.5.2 Fatigue life

The basic dynamic rate load (C_a) of the Ball Screw is used to calculate its fatigue life.

6.5.2.1 Basic dynamic rate load Ca

The basic dynamic rate load (C_a) is the revolution of 10⁶ that 90% of identical Ball Screw units in a group, when operated independently of one another under the same conditions, can achieve without developing flaking.

6.5.2.2 Fatigue life

Calculation life:

- There are three ways to show fatigue life:
- a. Total number of revolutions b. Total operating time

c. Total travel

$$L = \left(\frac{Ca}{Fa \times f_W}\right)^3 \times 10^6$$

п

$$L_t = \frac{1}{60 \times 10^6}$$
$$L_s = \frac{L \times 10^6}{10^6}$$

 10^{6}

Here

- L : Fatigue life (total number of revolutions) rev
- L_t : Fatigue life (total operating time) (hr)
- L_s : Fatigue life (total travel) (km)
- Ca: Basic dynamic rate load (kgf)
- Fa: Axial load (kgf)
- n : Rotation speed (rpm)
- l : Lead (mm)
- f_W : Load factor (refer to Table 6.1)

Load factor fw

Vibration and impact	Velocity (V)	f_W
Light	V<15 (<i>m/min</i>)	1.0~1.2
Medium	15 <v<60 (m="" min)<="" td=""><td>1.2~1.5</td></v<60>	1.2~1.5
Heavy	V>60 (m/min)	1.5~3.0

Too long or too short fatigue life are not suitable for Ball Screw selection. Using longer life make the Ball Screw selection. Using longer life make the Ball Screw's dimensions too large. It's an uneconomical result. Following table is a reference of Ball Screw's fatigue life.

Machine center	20,000 hrs
Production machine	10,000 hrs
Automatic controller	15,000 hrs
Surveying instruments	15,000 hrs

Standard

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit

Linear Guide

2 Mean load

When axial load change constantly. It is required to calculate the mean axial load (F_m) and the mean rotational speed (N_m) for fatigue life. Setting axial load (Fa) as Y-axis; rotational number (n.t) as X-axis. Getting three kind curves or lines.

a. Gradational variation curve (Fig. 6.5.2.1) Mean load can be calculated by using equation :

$$F_{m} = \left(\frac{F_{l}^{3} \cdot n_{l} \cdot t_{l} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \dots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{l} \cdot t_{l} + n_{2} \cdot t_{2} + \dots + n_{n} \cdot t_{n}}\right)$$

Mean rotation speed can be calculated by using equation :

$$N_m = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_1 + t_2 + \dots + t_n}$$

Axial load
(kgf)Rotation speed
(rpm)Time ratio
(Sec) F_1 n_1 t_1 F_2 n_2 t_2 \vdots F_n n_n t_n

F

0

b. Similar straight line (Fig. 6.5.2.2)

When mean load variation curve is like similar straight line Fig.6.5.2.2. Mean rotational speed can be calculated by using equation.

$$F_m = 1/3(F_{min} + F_{max})$$

Fig. 6.5.2.1 Gradational variation curve's load

- c. There are two cases when it display as Sine curve :
 - 1. When mean load variation curve is shown as the diagram below (Fig.6.5.2.3) Mean rotational speed can be calculated by using equation. $F_m=0.65F_{max}$
 - 2. When mean load variation curve is shown as the diagram below (Fig.6.5.2.4) Mean rotational speed can be calculated by using equation. $F_m = 0.75F_{max}$

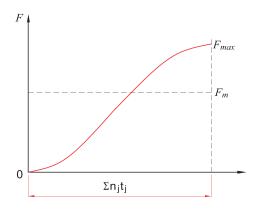


Fig. 6.5.2.3 Variation like Sine's curve load (1)

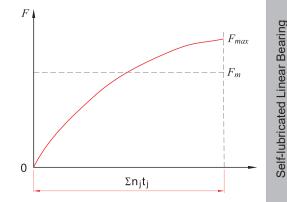
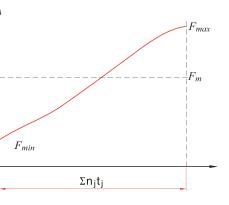
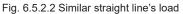




Fig. 6.5.2.4 Variation like Sine's curve load (2)

6.5.3

Material and Hardness

Material and Hardness of ABBA Ball Screws

Denomination	Material	Heat treating	Hardness (HRC)
Rolled	S55C	Induction hardening	58~62
Nut	SCM415H	Carburized hardening	58~62

6.5.4 Lubrication

Lithium base lubricants are used for Ball Screw lubrication. Their viscosity are 30~40 cst (40°C) and ISO grades of 32~100. Selecting:

1. Low temperature application : Using the lower viscosity lubricant.

2. High temperature, high load and low speed application : Using the higher viscosity lubricant.

Checking and supply interval of lubricant

The following table shows the general indicators of lubricant inspection and replenishment intervals. Wipe off the old lubricant attached to the screw shaft during replenishment before replenishing

Manner	Checking interval	Checking item	Supply or replacing interval
Automatic interval oil supply	Every week	Oil volume and purity	To supply on each check, its volume depends on oil tank capacity
Lubricating grease	Within 2-3 months after starting operation of machine	Foreign matter	Normally supply once a year as per the result of check
Oil bath	Everyday before operation of machine	Oil surface	To supply as per wasting condition

6.5.5 Dustproof

Same as the rolling bearings, if there is the particles such as chips or water get into the Ball Screw, the wearing problem shall be deteriorated. In some serious cases, Ball Screw shall then be damaged. In order to prevent these problems from happening, there are wipers assembled at both ends of ball nut to scrape chips and dust. There is also the "O-Ring" at the wipers to seal the lubrication oil from leaking from ball nut.

Standard

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit

Ball Screw

Linear Guide

6.5.6 Key points for Ball Screws selection and calculation Key points for Ball Screws selection Calculation for Ball Screws selection When Ball Screws are subjected to selection, it is a most fundamental rule that you must clearly find out what the operation conditions are before going ahead with the final design. Moreover, the elements of your selection include load weight, stroke, torque, position determination accuracy, tracking motion, hardness, lead stroke, nut inside diameter, **Design conditions** etc., all elements are mutually related, any Working table weight 300 1. Kg change to one of the elements are mutually 2. Working object weight 400 Kg related, any change to one of the elements, 700 З. Maximum stroke mm special attention should always be paid to Fast feed speed 10 m/min 4. the balance among the elements. Minimal disassembly ability μ m/stroke 5. 10 (MAX 1000 min⁻¹) Driving Motor DC Motor 6. 7. Guiding surface friction coefficeint $(\mu = 0.05 \sim 0.1)$ 60% 8. Running rate 9. Accuracy review items Inertia generated during acceleration/deceleration 10. can be neglected because the time periods involved are comparatively small. 1. Setting of operation conditions 1. Setting of operation conditions (a) Machine service life time reckoning of H (hr) (a) Machine service life time reckoning of H (hr) H = 12hr X 250 days X 10 years X 0.6 Running H = \times =18000hr hours/day days/year life years Running (b) Mechanical conditions (b) Mechanical conditions Sliding Cutting Time Cutting Sliding Time Dat Speed/rotations Speed/rotations resistance resistance used resistance resistance used $m / min / min^{-1}$ kgf kgf % 70 kgf 10 % Fast feed 10m/min/1000min 0 kgf Fast feed 6 600 100 70 50 Liaht cuttina Liaht cuttina 200 30 Medium cutting / Medium cutting 2 / 200 70 Heavy cutting Heavy cutting 1 300 70 1 100 10 Sliding resistance = $(300+400) \times 0.1=70$ kgf (c) Position determination accuracy Feed accuracy error factor includes load accuracy and system rigidity. Thermal displacement due to heat generation and positional error of the guide system is also important factors.

Self-lubricated Linear Bearing

Key points for Ball Screws selection	Calculation for Ball Screws selection
2.Ball Screws lead stroke ℓ (mm) $\ell = \frac{\text{Fast feed stroke (m/min)} \times 1000}{\text{Max. Rotating speed (min-1)}}$ (mm)	2.Ball Screws lead stroke ℓ (mm) $\ell = \frac{10000}{1000} = 10$ (mm) Minimal disassembly $= \frac{10mm}{1000 \text{ stroke}} = 0.01 \text{ mm/stroke}$
3.Computation of average load Pe (kgf) $Pe = \left(\frac{P_{1}^{3}n_{1}t_{1} + P_{2}^{3}n_{2}t_{2} + \dots + P_{n}^{3}n_{n}t_{n}}{n_{1}t_{1} + n_{2}t_{2} + \dots + n_{n}t_{n}}\right)^{\frac{1}{3}}$ $Pe = \frac{2Pmax + Pmin}{3}$ $pe = 0.65 Pmax$ $pe = 0.75 Pmin$	3.Computation of average load Pe (kgf) Pe = $\left(\frac{70^{3} \times 1000 \times 10+170^{3} \times 600 \times 50+270^{3} \times 200 \times 30+370^{3} \times 100 \times 10}{1000 \times 10+600 \times 50+200 \times 30+100 \times 10}\right)^{1/3}$ = $\left(\frac{31.7 \times 10^{13}}{4.7 \times 10^{4}}\right)^{1/3}$ \Rightarrow 189 kgf
4.Average number of rotation nm $n_{m} = \frac{n_{1}t_{1} + n_{2}t_{2} + \dots + n_{n}t_{n}}{100}$	4.Average number of rotation n _m $n_{m} = \frac{1000 \times 10+600 \times 50+200 \times 30+100 \times 10}{100}$ $= \frac{4.7 \times 10^{4}}{100}$ $= 470 \text{ min}^{-1}$
5.Calculation of required dynamic rated load Ca (kgf) Ca = Pe • fs	5.Calculation of required dynamic rated load Ca(kgf) Ca =189×5=945 (kgf)
6.Calculation of required static rated load Coa (kgf) Coa=Pmax • fs	6.Calculation of required static rated load Coa (kgf) Coa = 369×5 =1845 (kgf)
 7.Selection of nut type Ca > 945 Coa > 1845 Select the nut types with basic dynamic rated load and basic static rated load as specified above. 	7.Selection of nut type Choose SFI 4010 on the catalogue Ca = 3178 kgf Coa = 9480 kgf

Key points for Ball Screws selection	Calculation for Ball Screws selection		
8. Calculation of life confirmation Lt (h) $L_{t} = \left(\frac{Ca}{Pe \bullet fw}\right)^{3} \bullet \frac{1}{60 n_{m}} \bullet 10^{6}$	8. Calculation of life confirmation Lt(h) $L_{t} = \left(\frac{3178}{189 \cdot 2}\right)^{3} \cdot \frac{1}{60 \cdot 470} \cdot 10^{6}$ $= 20479 \text{ (h)}$	ed Standard	
9. Determination of screw length Screw length = Maximal stroke + Nut length + 2 X reserved length at shaft end	9. Determination of screw length Screw length = 700 + 93 + 2 x 81 = 874 mm	Miniature Ball Caged	inear Guide
10. Mounting distance of screw length	10. Mounting distance of screw length (Fixed - Fixed)	Cam Roller	- ince
11. Permissible axial load	11. Permissible axial load Omitted because of Fixed - Fixed	Round Shaft	
12. Permissible revolution speed n and dm $n = \alpha \times \frac{60\lambda^2}{2\pi L^2} \sqrt{\frac{Elg}{\gamma A}} = f \frac{dr}{L^2} \times 10^7 (rpm)$	12. Permissible revolution speed n and dm $n = \frac{21.9 \times 35.2 \times 10^{7}}{1200^{2}}$ $= 5353 \text{min}^{-1} > \text{nmax}$	Ball Screw	Corour
dm = Shaft dia. X Maximal speed	$dm = 40 \times 1000 \\= 40000 < 50000$	ort Unit	
13. Countermeasure against thermal $\Delta L_{\theta} = \rho \cdot \theta \cdot L$ Here	 13. Countermeasure against thermal It is estimated there would be a temperature rise of 2~5°C with the Ball Screws of the general machin- 	Support U	
ΔL_{θ} : Thermal displacement (µm) ρ : Thermal-expansion coefficient (12µm/m°C) θ : Screw-shaft temperature change (°C) L : Ball screw length (mm)	ery, take temperature rise of 2°C to computer the extension of Ball Screw. $\Delta L_{\theta} = \rho \cdot \theta \cdot L$ $= 12 \times 10^{6} \times 2 \times 700 \text{ mm} \approx 0.0168 \text{ mm}$ $F_{P} = \frac{EA\Delta L_{\theta}}{L}$ $= \frac{2.06 \times 10^{4} \frac{\pi \times 35.2^{2}}{4} \times 0.0168}{700} \approx 481 \text{ kgf}$ Deviation can be corrected by estimating the temperature rise per extension of 0.0168 mm, and taking into consideration of the pre-tension of 481 kgf.	Self-Iubricated Linear Bearing	Other components

Key points for Ball Screws selection Calculation for Ball Screws selection 14. Rigidity review 14. Rigidity review (1) Axial rigidity Ks and displacement δ_s of screw shaft (1) Rigidity Ks = $\frac{P}{\sqrt{S}s}$ (kgf / mm) $\delta_{\text{SF}} = \frac{\text{PL}}{\text{4AE}} = \frac{27 \times 1200}{4 \times \frac{\pi \times 35.2^2}{4} \times 2.06 \times 10^4}$ P = Axial load (kgf) = 0.00036 mn For places of Fixed - Fixed installation $Ks = \frac{370}{0.00036} = 10.3 \times 10^5 \text{ kgf} / \text{mm}$ $\delta_{SF} = \frac{PL}{4AE}$ (mm) (2) Rigidity of steel ball and nut groove (2) Axial rigidity K_N and displacement δ_N of nut $n = \frac{41.8 \times \pi \times 2.5}{6.35} = 52$ $K_N = \frac{P}{O_S} (kgf / mm)$ $Q = \frac{370}{52 \sin 45^{\circ}} = 10$ In case of single nut $\delta_{\rm NS} = \frac{\rm K}{\sin\beta} \left(\frac{\rm Q^2}{\rm d}\right)^{1/3} \times \frac{\rm 1}{\zeta} \,(\,\rm mm)$ $\delta_{\rm NS} = \frac{0.00057}{\sin 45^{\circ}} \left(\frac{10^2}{6.35}\right)^{1/3} \times \frac{1}{0.7}$ $Q = \frac{P}{n \cdot \sin\beta}$ (kgf) $= 2.9 \times 10^{-3}$ mm $K_N = \frac{370}{2.9 \times 10^{-3}} = 1.28 \times 10^{5} \text{kgf/mm}$ $n = \frac{D_0 \pi m}{d} \quad (each)$ (3) Rigidity of brancing bearings (3) Axial rigidity K_B and displacement δ_B of Support bearing Where, nut rigidity 50 kgf/mm $K_B = \frac{P}{\sqrt{B}} (\text{kgf} / \text{mm})$ $\delta_{B} = \frac{370}{50 \times 2} = 3.7 \ \mu \,\mathrm{m}$ $K_B = \frac{370}{0.0037} = 1 \times 10^5 \text{ kgf/mm}$ $\odot\,\delta$ total=0.36 + 2.9 + 3.7 = 6.96 $\,\mu$ m 15. Confirmation of the Ball Screw life 15. Confirmation of the Ball Screw life L = 20479(h) > 18000 (h)

Standard

Ball Caged

Miniature

Roller

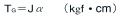
Cam

Round Shaft

Ball Screw

Support Unit

Ball Screw


Linear Guide

6.6 **Driving torque**

Driving torque Ts of the transmission shaft

- (in fixed speed) $T_S = T_P + T_D + T_F$
- $T_{S} = T_{G} + T_{P} + T_{D} + T_{F}$ (when accelerating)
 - T_{G} : Acceleration torque (1)
 - T_{P} : Load torque (2)
 - $T_{\rm D}$: Preload torque (3)
 - T_{F} : Friction torque (4)

Acceleration torque Tg

$$\alpha = \frac{2\pi n}{60\Lambda t} \text{ (rad/s}^2\text{)}$$

- $J : Moment of inertia (kgf \cdot cm \cdot s^2)$
- α : Angular acceleration (rad/s²)
- n : Revolutions (min⁻¹)
- Δt : Starting time (sec)

Load torque T_P

 $\mathsf{T}_{\mathsf{P}} = \frac{\mathsf{P} \bullet \boldsymbol{\ell}}{2\pi\eta_1} \; (\mathsf{kgf} \bullet \mathsf{cm})$

 $P = F + \mu Mg$

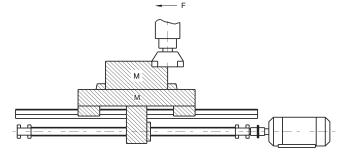
- P : Axial load (kgf)
- e : lead (cm)
- η_1 : Positive efficiency
- The efficiency when rotating motion is altered to linear motion
- F : Cutting force (kgf)
- μ : Friction coefficient
- M: Mass of moving object (kg)
- g : Acceleration of gravity (9.8 m/s²)

$\mathsf{T}_{\mathsf{P}} = \frac{\mathsf{P} \bullet \ell \bullet \eta_2}{2\pi}$

 η_2 : Reverse efficiency

The efficiency when linear motion returns to rotating motion

3 Preload torque T_D


 $\frac{\mathsf{K} \bullet \mathsf{P}_{\mathsf{PL}} \bullet \ell}{2} \; (\mathsf{kgf} \bullet \mathsf{cm})$ T_D = $\sqrt{\tan \alpha} \cdot 2\pi$

- κ Internal coefficient (0.05 is usually adopted) P_{PL} : Preload (kgf)
- l : Lead (cm)
- α : Lead angle

4 Friction torque T_F

- $T_{F} = T_{B} + T_{O} + T_{J} (kgf \cdot cm)$
- T_B : Friction torque of bracing shaft
- To: Friction torque of free shaft
- TJ: Friction torque motor shaft

The friciton torque of the bracing shaft would be affected by the lubrication oil. Or special attention has to be paid to unexpected excessive friction torque which may be generated when oil seal is overly tight, or may result in temperature rise.

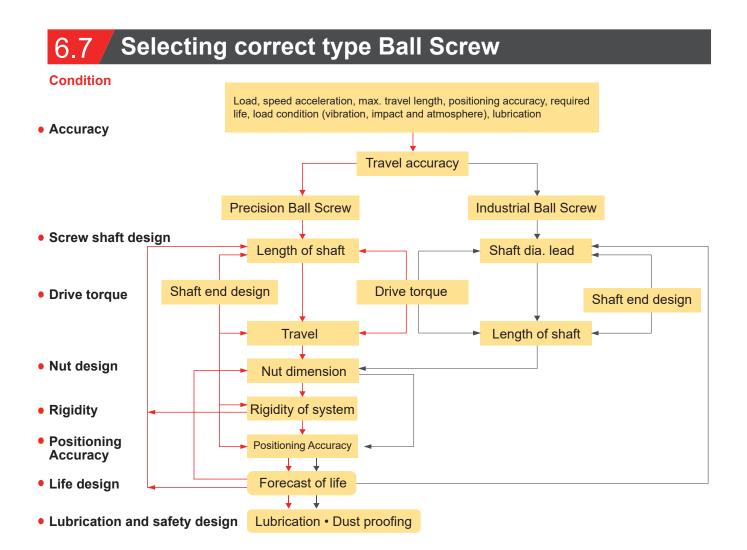
Moment of inertia of load

[For reference] Moment of inertia of load

 $J = J_{BS} + J_{CU} + J_{W} + J_{M}$

- J_{BS} : Moment of inertia Ball Screws shaft
- J_{cu}: Moment of inertia coupler
- J_w: Moment of inertia linear motion part
- J_{M} : Moment of inertia Roller shaft part of motor shaft

Conversion formula for moment of inertia of load

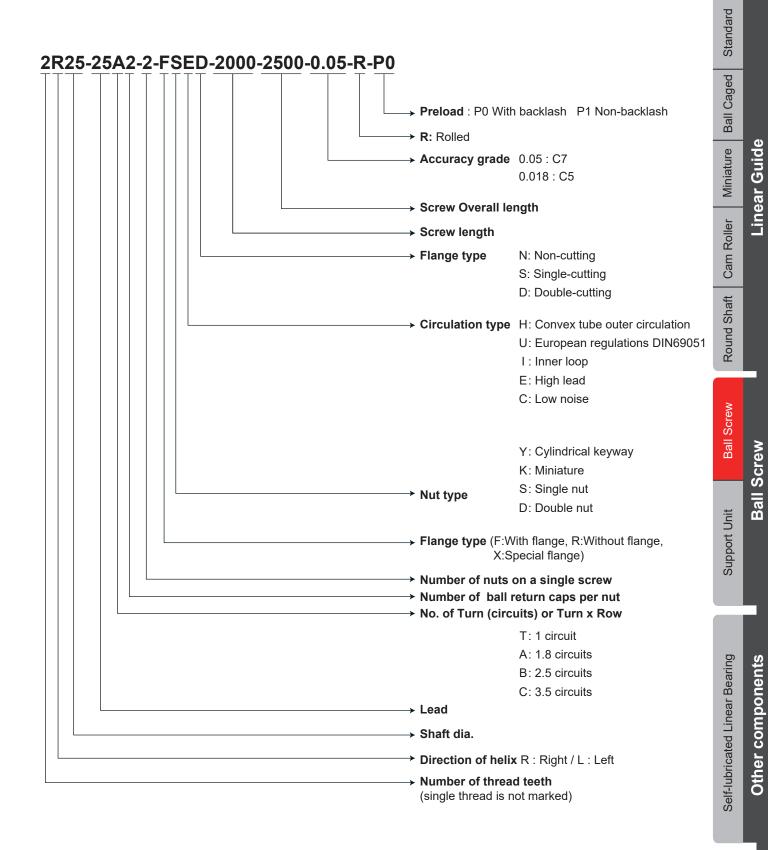

Formula Moment of inertia converted from motor shaft	J
Cylinder load	$\frac{\pi \rho LD^4}{32}$
Linearly moving object	$\frac{M}{4} \left(\frac{V\ell}{\pi \cdot N_M} \right)^2 = \frac{M}{4} \left(\frac{P}{\pi} \right)^2$
Unit	kg • m ²
Moment if inertia during deceleration	$J_{M} = \left(\frac{J\ell}{N_{M}}\right)^{2} \cdot J\ell$

- ρ : Density (kg / m³) ρ = 7.8 × 10³
- L : Cylinder length (m)
- D : Cylinder diameter (m)
- M : Mass of linear motion part (kg)
- NM: Motor shaft revolutions (min⁻¹)

Other components

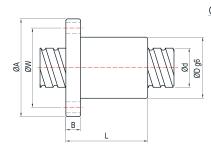
Self-lubricated Linear Bearing

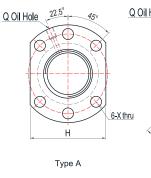
- P : The moving magnitude of the linearly moving object per every rotation of the motor (m)
- Ne: Rotations in longitudinal moving direction (min⁻¹) Je: Moment of inertia in load direction
- $v_{\ell}: \ Velocity of linearly moving object (m / min) \ J_{M}: \ Moment of inertia in motor direction$

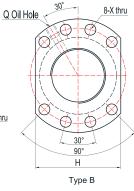

ABBA Ball Screw size list

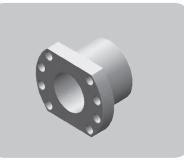
Lead Dia.	1	2	2.5	3	4	5	5.08	6	10	12.7	16	20	25	32	40	50
6	۲															
8	۲	۲	۲													
10		۲		۲	۲											
12		۲			۲	۲			۲	۲						
14		۲			۲	۲										
15												۲				
16		۲			۲	۲	۲		۲		۲					
20						۲			۲			۲				
25					۲	۲			۲			۲	۲			
32						۲		۲	۲			۲		۲		
40						۲		۲	۲			۲			۲	
50									۲			۲				۲
63									۲			۲			۲	
80									۲			۲				

Rolled Ball Screw

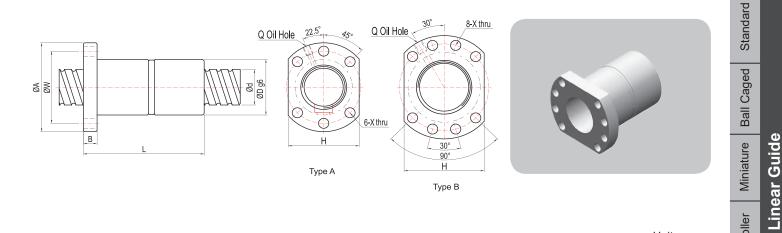

6.8 **Ordering key of Ball Screw**




6.9 Dimension of Ball Screw


6.9.1

FSU (DIN69051)


Unit : mm

Model No.	Dimensions														
	d		Da	D	А	В	L	W	Х	Туре	Н	Q	n	Ca(Kgf)	Coa(kgf)
1204-4	12	4	2.381	24	40	10	40	32	4.5	А	30	M6	T4	816	1489
1604-4	16	4	2.381	28	48	10	45	38	5.5	А	40	M6	T4	939	2048
* 1605-3	16	5	3.175	28	48	10	42	38	5.5	А	40	M6	Т3	1063	1957
* 1605-4	16	5	3.175	28	48	10	50	38	5.5	А	40	M6	T4	1361	2609
2005-3	20	5	3.175	36	58	10	47	47	6.6	А	44	M6	Т3	1192	2542
* 2005-4	20	5	3.175	36	58	10	53	47	6.6	А	44	M6	T4	1527	3390
2006-3	20	6	3.969	36	58	10	52	47	6.6	А	44	M6	Т3	1589	3062
2010-3	20	10	3.969	36	58	10	68	47	6.6	А	44	M6	Т3	1603	3122
2504-4	25	4	2.381	40	62	11	46	51	6.6	А	48	M6	T4	1173	3350
2505-3	25	5	3.175	40	62	10	47	51	6.6	А	48	M6	Т3	1340	3268
* 2505-4	25	5	3.175	40	62	10	53	51	6.6	А	48	M6	T4	1716	4357
2510-3	25	10	4.762	40	62	12	75	51	6.6	А	48	M6	Т3	2260	4657
2510-4	25	10	4.762	40	62	12	85	51	6.6	А	48	M6	T4	2894	6210
★ 3205-4	32	5	3.175	50	80	12	53	65	9	А	62	M6	T4	1932	5705
3206-4	32	6	3.969	50	80	12	58	65	9	А	62	M6	T4	2592	6979
3210-3	32	10	6.35	50	80	16	77.5	65	9	А	62	M6	Т3	3721	7924
3210-4	32	10	6.35	50	80	16	90	65	9	А	62	M6	Τ4	4765	10565
★ 4005-4	40	5	3.175	63	93	16	56	78	9	В	70	M8	T4	2147	7250
4006-4	40	6	3.969	63	93	14	60	78	9	В	70	M6	T4	2880	8862
4010-4	40	10	6.35	63	93	18	93	78	9	В	70	M8	T4	5331	13636
5006-4	50	6	3.969	75	110	15	62	93	11	В	85	M8	T4	3208	11324
5010-4	50	10	6.35	75	110	18	93	93	11	В	85	M8	T4	5986	17502
6310-4	63	10	6.35	90	125	18	98	108	11	В	95	M8	T4	6727	22820
6320-3	63	20	9.525	95	135	20	138	115	13.5	В	100	M8	Т3	8931	24831
8010-4	80	10	6.35	105	145	20	98	125	13.5	В	110	M8	T4	7519	29386
8020-3	80	20	9.525	125	165	25	143	145	13.5	В	130	M8	Т3	10076	32217

Note: with sign \star can produce left helix

6.9.2 FDU (DIN69051)

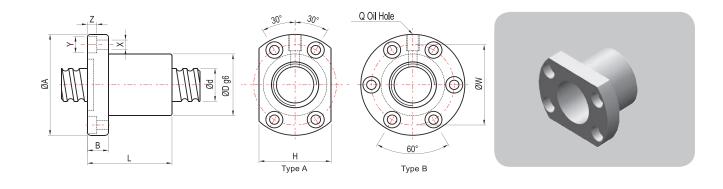
		Dimensions													
Model No.	d		Da	D	А	В	L	W	Х	Туре	Н	Q	n	Ca(Kgf)	Coa(kgf)
★ 1605-3	16	5	3.175	28	48	10	80	38	5.5	А	40	M6	Т3	1063	1957
★ 2005-4	20	5	3.175	36	58	12	92	47	6.6	А	44	M6	T4	1527	3390
★ 2505-4	25	5	3.175	40	62	12	92	51	6.6	А	48	M6	T4	1716	4357
2510-4	25	10	4.762	40	62	12	153	51	6.6	А	48	M6	T4	2896	6210
★ 3205-4	32	5	3.175	50	80	12	92	65	9	А	62	M6	T4	1932	5705
3210-4	32	10	6.35	50	80	16	160	65	9	А	62	M6	T4	4765	10565
4005-4	40	5	3.175	63	93	15	96	78	9	В	70	M8	T4	2147	7250
4010-4	40	10	6.35	63	93	18	162	78	9	В	70	M8	T4	5331	13636
5010-4	50	10	6.35	75	110	16	162	93	11	В	85	M8	T4	5986	17502
6310-4	63	10	6.35	90	125	18	182	108	11	В	95	M8	T4	6727	22820
6320-3	63	20	9.525	95	135	20	253	115	13.5	В	100	M8	Т3	8931	24831
8010-4	80	10	6.35	105	145	20	182	125	13.5	В	110	M8	Т4	7519	29386
8020-3	80	20	9.525	125	165	25	253	145	13.5	В	130	M8	Т3	10076	32217

Note: with sign \star can produce left helix

Self-Iubricated Linear Bearing

Other components

Cam Roller


Round Shaft

Ball Screw

Support Unit

Ball Screw

6.9.3 FSI

Dimensions Model No. D В W Туре d Da А L Х Ζ Н Q Ca(Kgf) Coa(kgf) 1404-4 14 4 2.381 26 46 10 47 36 4.5 8 4.5 А 34 M6 T4 880 1769 1405-3 14 5 3.175 26 46 10 45 36 4.5 8 4.5 А 34 M6 T3 995 1686 1604-4 16 4 2.381 30 49 10 45 39 4.5 8 4.5 А 34 M6 Τ4 939 2048 1605-3 16 5 3.175 30 49 10 42 39 4.5 8 4.5 А 34 M6 T3 1063 1957 ***** 1605-4 16 5 3.175 30 49 10 50 39 4.5 8 4.5 А 34 M6 Τ4 1361 2609 1610-3 3207 16 10 3.175 34 58 10 65 45 5.5 9.5 5.5 А 36 M6 T3 1490 2005-4 20 5 3.175 34 57 12 53 45 5.5 9.5 5.5 А 40 Τ4 1527 3390 M6 2010-3 20 10 3.969 46 74 13 54 59 6.6 11 5.5 46 **T**3 1648 3554 А M6 2504-4 25 63 А 4 2.381 40 11 46 51 5.5 9.5 5.5 46 Τ4 3350 M6 1173 * 2505-4 25 5 3.175 40 63 12 53 51 5.5 9.5 5.5 А 46 M8 **T**4 1716 4357 2510-4 25 10 4.762 46 72 12 85 58 6.5 11 6.5 А 52 M6 Τ4 2894 6210 5705 * 3205-4 32 12 52 5 3.175 46 72 53 58 6.5 11 6.5 А M8 T4 1932 3206-4 32 6 3.969 62 89 12 63 75 6.5 11 6.5 В -M8 T4 2592 6897 8.5 3210-4 32 10 6.35 54 16 90 70 9 14 62 T4 4765 10565 88 А M8 * 4005-4 9 Τ4 7250 40 5 3.175 56 90 16 56 72 14 8.5 А 64 M8 2147 4010-4 40 6.35 17.5 Τ4 10 62 104 18 93 82 11 11 А 70 M8 5331 13636 17.5 5010-4 50 10 6.35 72 114 18 93 92 11 11 А 82 M8 Τ4 5986 17502 6310-4 63 6.35 131 22 100 107 14 20 13 В Τ4 6727 22820 10 85 M8 -6320-3 63 20 9.525 95 153 23 130 123 18 26 17.5 В M8 Т3 8931 24831 -8010-4 80 10 6.35 105 150 22 92 127 14 20 13 В M8 Τ4 7519 29386 80 20 173 23 18 26 В 8020-3 9.525 115 130 143 17.5 M8 Т3 10076 32217

Note: with sign **★** can produce left helix

Cam Roller

Round Shaft

Ball Screw

Support Unit

Self-Iubricated Linear Bearing

Other components

Ball Screw

Unit : mm

6.9.4 FDI

80 20

8020-3

9.525

115

173

23

253 143

18

26

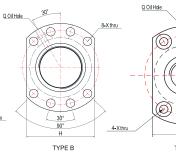
17.5

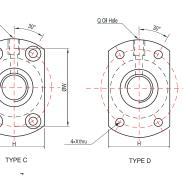
В

-

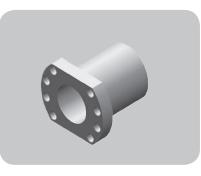
Model No.		Dimensions															
	d		Da	D	А	В	L	W	Х	Y	Z	Туре	Н	Q	n	Ca(Kgf)	Coa(kgf)
* 1605-3	16	5	3.175	30	49	10	80	39	4.5	8	4.5	А	34	M6	Т3	1063	1957
* 2005-4	20	5	3.175	34	57	12	92	45	5.5	9.5	5.5	А	40	M6	T4	1527	3390
* 2504-4	25	4	2.381	40	63	11	80	51	5.5	9.5	5.5	А	46	M6	Т4	1173	3350
★ 2505-4	25	5	3.175	40	63	12	92	51	5.5	9.5	5.5	А	46	M8	T4	1716	4357
2510-4	25	10	4.762	46	72	12	156	58	6.5	11	6.5	А	52	M6	T4	2894	6210
★ 3205-4	32	5	3.175	46	72	12	92	58	6.5	11	6.5	А	52	M8	T4	1932	5705
3210-4	32	10	6.35	54	88	16	160	70	9	14	8.5	А	62	M8	Т4	4765	10565
★ 4005-4	40	5	3.175	56	90	16	96	72	9	14	8.5	А	64	M8	T4	2147	7250
4010-4	40	10	6.35	62	104	18	162	82	11	17.5	11	А	70	M8	Т4	5331	13636
5010-4	50	10	6.35	72	114	18	162	92	11	17.5	11	А	82	M8	T4	5986	17502
6310-4	63	10	6.35	85	131	22	182	107	14	20	13	В	-	M8	Т4	6727	22820
6320-3	63	20	9.525	95	153	23	253	123	18	26	17.5	В	-	M8	Т3	8931	24831
8010-4	80	10	6.35	105	150	22	182	127	14	20	13	В	-	M8	T4	7519	29386

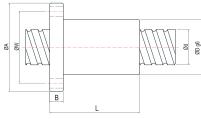

Note: with sign \star can produce left helix


10076


32217

M8 T3


6.9.5 FSC



90 g6

TYPE : A B D

B B TYPE C TYPE C

Unit : mm

Model No.									Dim	ensio	ons						
Model No.	d		Da	D	А	В	L	W	Х	Y	Ζ	Туре	Н	Q	n	Ca(Kgf)	Coa(kgf)
1205-3	12	5	2	24	40	8	30	32	3.6	-	-	D	25	-	Т3	513	1051
1210-2	12	10	2	30	50	10	40	40	4.5	8	4.5	С	32	M6	T2	347	657
1520-2	15	20	3.175	34	55	12	57	45	6	-	-	D	34	M6	T2	729	1353
1610-3	16	10	3.175	28	48	12	43	38	5.5	-	-	А	40	M6	Т3	1097	2245
1616-4	16	16	3.175	28	48	12	61	38	5.5	-	-	А	40	M6	T4	1361	2886
2010-3	20	10	3.969	46	74	13	54	59	6.6	11	5.5	С	46	M6	Т3	1648	3554
2525-4	25	25	3.969	47	74	12	67	60	6.6	-	-	А	56	M6	T4	2236	5590
3220-3	32	20	3.969	50	80	13	78	65	9	-	-	А	62	M6	Т3	2013	5522
3232-4	32	32	4.762	56	86	16	82	71	9	-	-	А	65	M6	T4	3197	8612
4020-3	40	20	5.556	63	93	15	83	78	9	-	-	В	70	M8	Т3	3530	9793
4040-4	40	40	6.35	65	95	18	100	80	9	-	-	В	72	M8	Τ4	5225	14404
5020-5	50	20	6.35	75	110	18	121	93	11	-	-	В	85	M8	T5	7401	23822
6310-6	63	10	6.35	90	135	20	94	108	13.5	-	-	В	100	M8	Т6	8170	31750

Note: Steel balls 3.5mm, please order 3.5mm shaft to meet

Standard

Miniature Ball Caged

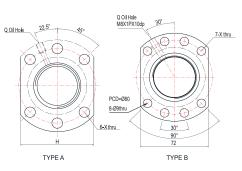
Cam Roller

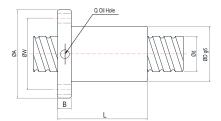
Round Shaft

Ball Screw

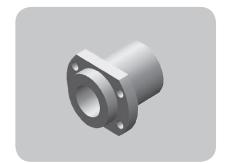
Support Unit

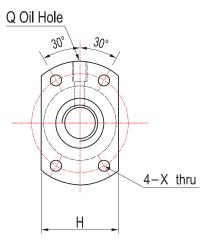
Self-Iubricated Linear Bearing

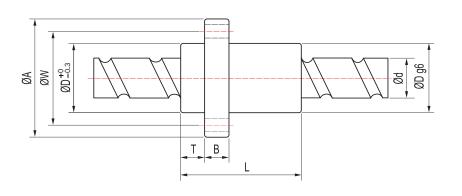

Other components


Ball Screw

Linear Guide

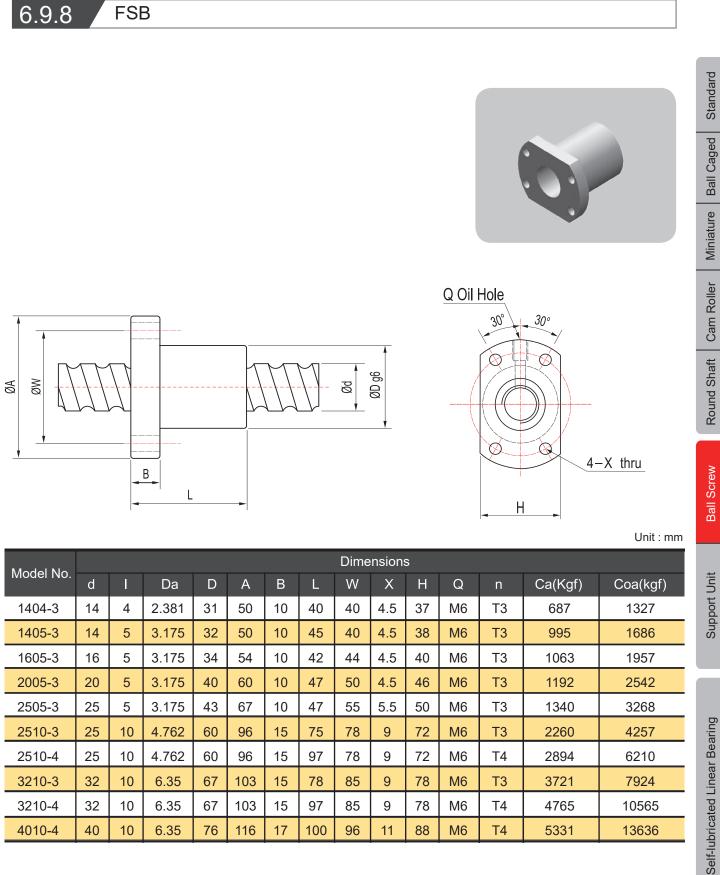





Model No.									Dim	ensions					
would no.	d	1	Da	D	А	В	L	W	Х	Туре	Н	Q	n	Ca(Kgf)	Coa(kgf)
1205-2.8	12	5	2	24	40	8	30	32	4.5	А	30	-	B1	513	1051
1210-1.8	12	10	2	24	40	8	34	32	4.5	А	30	-	A1	347	657
1605-3.8	15	5	2.778	28	48	10	36	38	5.5	А	40	M6	C1	1159	2514
1610-2.8	15	10	2.778	28	48	10	46	38	5.5	А	40	M6	B1	891	1852
1616-1.8	15	16	2.778	28	48	10	45	38	5.5	А	40	M6	A1	609	1191
1520-1.8	15	20	2.778	28	48	10	54	38	5.5	А	40	M6	A1	609	1191
2005-3.8	20	5	3.175	36	58	10	36	47	6.6	А	44	M6	C1	1584	3867
2010-3.8	20	10	3.175	36	58	10	56	47	6.6	А	44	M6	C1	1584	3867
2020-3.6	20	20	3.175	36	58	10	55	47	6.6	А	44	M6	A2	1497	3581
2510-3.8	25	10	3.5	40	62	10	64	51	6.6	А	48	M6	C1	1978	5157
2525-1.8	25	25	3.175	40	62	10	65	51	6.6	А	48	M6	A1	920	2266
3232-3.6	32	32	4.762	50	80	16	82	65	9	А	62	M6	A2	3197	8612
4040-3.6	40	40	6.35	63	93	18	100	78	9	В	70	M8	A2	5225	14404

117

6.9.7 FSE



Unit : mm

								Din	nensio	ns					
Model No.	d	I	Da	D	А	В	Т	L	W	Х	Н	Q	n	Ca(Kgf)	Coa(kgf)
1616-3.6	16	16	3.175	32	53	10	10.5	48	42	4.5	38	M6	A2	1361	2886
* 2020-3.6	20	20	3.175	39	62	10	10.8	55	50	5.5	46	M6	A2	1497	3581
2520-3.6	25	20	3.5	47	74	12	11	65	60	6.6	49	M6	A2	1888	4885
2525-3.6	25	25	3.969	47	74	12	11.2	67	60	6.6	56	M6	A2	2236	5590
3232-3.6	32	32	4.762	58	92	15	14	82	74	9	68	M6	A2	3197	8612
4040-3.6	40	40	6.35	73	114	17	17	100	93	11	84	M6	A2	5225	14404
5050-3.6	50	50	7.938	90	135	20	21.5	125	112	14	92	M6	A2	7838	22704

Note: with sign \star can produce left helix

3210-4

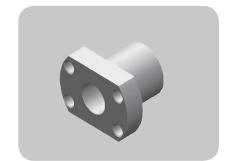
4010-4

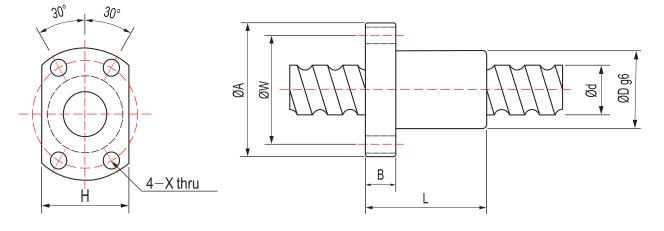
6.35

6.35

M6

M6

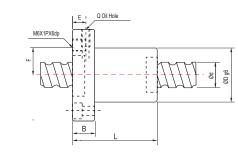

Τ4

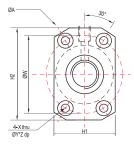

Τ4

Other components

Linear Guide

Ball Screw





							Dime	nsions					
Model No.	d	I	Da	D	А	В	L	W	Х	Н	n	Ca(Kgf)	Coa(kgf)
0601-3	6	1	0.8	12	24	3.5	18	18	3.4	16	Т3	111	201
0801-3	8	1	0.8	14	27	4	20	21	3.4	18	Т3	126	272
0802-3	8	2	1.2	16	29	4	26	23	3.4	20	Т3	215	398
0825-3	8	2.5	1.2	16	29	4	26	23	3.4	20	T3	215	397
1002-3	10	2	1.2	18	35	5	28	27	4.5	22	Т3	241	508
1003-3	10	3	1.8	24	44	8	32	34	4.5	27	Т3	401	700
1004-3	10	4	2	26	46	10	35	36	4.5	28	Т3	468	798
1202-3	12	2	1.2	20	37	5	28	29	4.5	24	Т3	263	617
1204-3	12	4	2.381	28	48	6	35	39	5.5	30	Т3	645	1117
1205-3	12	5	2	28	48	6	35	39	5.5	30	Т3	506	952
1402-3	14	2	1.2	21	40	6	28	31	5.5	26	Т3	282	724
1602-3	16	2	1.2	25	43	10	32	35	5.5	29	Т3	301	837

6.9.10 FPA

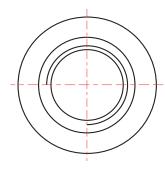
Standard

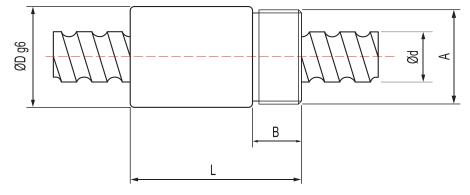
Miniature Ball Caged

Cam Roller

Linear Guide

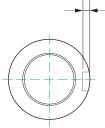
Support Unit

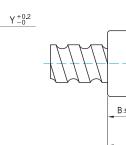

										Dim	ensior	าร							
Model No.	d		Da	D	А	В	Е	F	L	W	Х	Υ	Ζ	H1	H2	Q	n	Ca(Kgf)	Coa(kgf)
1205-4	12	5	2	30	50	10	6	15	43	40	4.5	8	4.4	32	45	M4	T4	667	1426
1210-3	12	10	2	30	50	10	6	15	44	40	4.5	8	4.4	32	45	M4	Т3	507	1022
1520-2	15	20	3.175	34	57	12	6	17	57	45	6	9.5	5.4	34	50	M6	T2	729	1353
1605-3	16	5	3.175	34	57	10	6	17	42	45	5.5	9.5	5.4	34	50	M6	Т3	1063	1957
1610-3	16	10	3.175	34	57	11	6	17	44	45	5.5	9.5	5.4	34	50	M6	Т3	1097	2245
2005-3	20	5	3.175	44	67	11	6	22	48	55	5.5	9.5	5.4	44	60	M6	Т3	1192	2542
2010-3	20	10	3.969	46	74	13	6.5	24	54	59	6.6	11	6.5	46	66	M6	Т3	1648	3554
2020-4	20	20	3.175	46	74	13	6.5	24	55	59	6.6	11	6.5	46	66	M6	T4	1497	3581

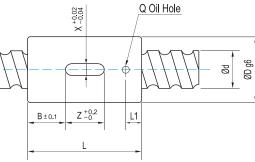

Other components

Self-Iubricated Linear Bearing

6.9.11 RSK(without wipers)






Model No.					Dim	ensions				
	d	1	Da	D	А	В	L	n	Ca(Kgf)	Coa(kgf)
0825-3	8	2.5	1.2	17.5	M15X1P	8	26	Т3	215	397
1003-3	10	3	1.8	21	M18X1P	9	29	Т3	401	700
1204-3	12	4	2.381	25.5	M20X1P	10	34	Т3	637	1117
1205-3	12	5	2	25.5	M20X1P	10	39	Т3	506	952
1605-3	16	5	3.175	32.5	M26X1.5P	12	42	Т3	1063	1957

6.9.12 RSY

Unit : mm

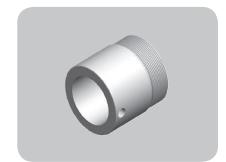
							D	imensi	ons					
Model No.	d	[Da	D	L	В	Х	Y	Ζ	Q	L1	n	(Ca Kgf)	(Coa (K
1202-3	12	2	1.2	24	30	9	3	1.5	12	Ø3	4	Т3	263	617
1204-3	12	4	2.381	24	35	11.5	3	1.5	12	Ø3	5	Т3	637	1117
1205-3	12	5	2	24	40	14	3	1.5	12	Ø3	5	Т3	506	952
1205-4	12	5	2	24	36	10	3	1.5	12	Ø3	5	T4	667	1426
1210-2	12	10	2	24	40	14	3	1.5	12	Ø3	5	T2	380	730
1602-3	16	2	1.2	28	40	10	5	2	20	Ø3	5	Т3	301	837
1604-4	16	4	2.381	28	45	12.5	5	2	20	Ø3	7	T4	939	2048
1605-3	16	5	3.175	28	45	12.5	5	2	20	Ø3	7	Т3	1063	1957
* 1605-4	16	5	3.175	28	50	15	5	2	20	Ø3	7	T4	1361	2609
1610-3	16	10	3.175	28	45	12.5	5	2	20	Ø3	7	Т3	1164	2405
1616-2	16	16	3.175	28	45	12.5	5	2	20	Ø3	7	T2	821	1603
2005-3	20	5	3.175	36	47	13.5	5	2	20	Ø3	7	Т3	1192	2542
* 2005-4	20	5	3.175	36	53	16.5	5	2	20	Ø3	7	T4	1527	3390
2010-3	20	10	3.969	36	68	24	5	2	20	Ø3	7	Т3	1749	3808
2020-4	20	20	3.175	36	55	17.5	5	2	20	Ø3	7	T4	1639	3979
* 2505-4	25	5	3.175	40	53	16.5	5	2	20	Ø3	7	T4	1716	4357
▲2510-3	25	10	3.5	40	54	17	5	2	20	Ø3	7	Т3	1614	4071
* 3205-4	32	5	3.175	50	53	11.5	6	2.5	30	Ø3	7	T4	1932	5705
3210-3	32	10	6.35	50	70	20	6	2.5	30	Ø3	7	Т3	3721	7924
3220-3	32	20	3.969	50	78	24	6	2.5	30	Ø3	7	Т3	2136	5917
★ 4005-4	40	5	3.175	63	56	13	6	2.5	30	Ø3	7	T4	2147	7250
4010-3	40	10	6.35	63	80	25	6	2.5	30	Ø3	7	Т3	4163	10227
4020-3	40	20	5.556	63	83	26.5	6	2.5	30	Ø3	7	Т3	3746	10492
5010-3	50	10	6.35	75	82	23	6	2.5	36	Ø3	7	Т3	4674	13126
6310-4	63	10	6.35	85	90	29	6	3.5	32	Ø5	14	T4	6727	22820

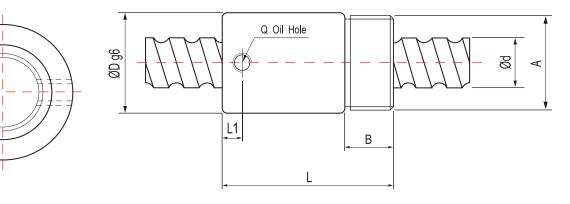
Ball Caged Miniature Linear Guide

Cam Roller

Round Shaft

Ball Screw

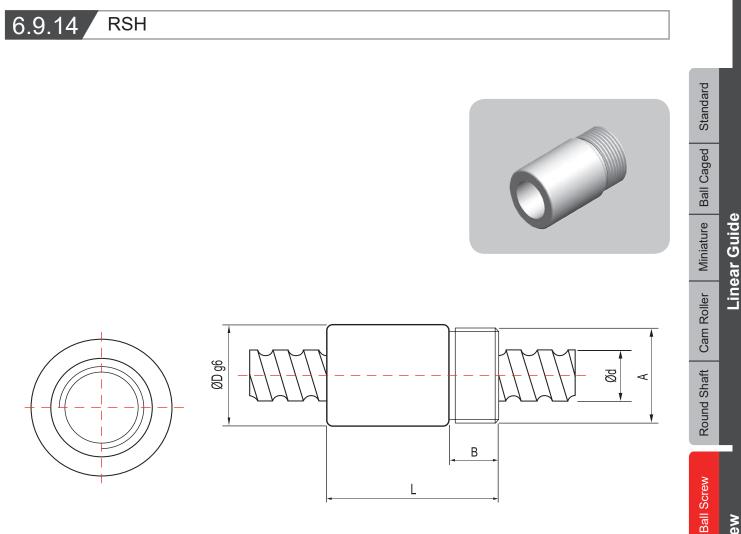

Support Unit


Standard

Self-Iubricated Linear Bearing

Note: 1. with sign ★ can produce left helix 2. Steel balls 3.5mm, please order 3.5mm shaft to meet

6.9.13 RSU



	mm

Model No.						Dime	ensions					
	d	I	Da	D	А	В	L	Q	L1	n	Ca(Kgf)	Coa(kgf)
▲ 1604-3	16	4	2.381	29	M22X1.5P	8	32	-	-	Т3	733	1536
1605-4	16	5	3.175	32	M30X1.5P	16	56	M6	6.5	T4	1361	2609
2005-4	20	5	3.175	38	M35X1.5P	16.5	59.5	M6	7	T4	1527	3390
2505-4	25	5	3.175	42	M40X1.5P	17	60	M6	7	T4	1716	4357
2510-4	25	10	4.762	42	M40X1.5P	17	90	M6	10	T4	2894	2610
3205-4	32	5	3.175	52	M48X1.5P	19	60	M6	7	T4	1932	5705
3210-4	32	10	6.35	52	M48X1.5P	19	93	M6	12	T4	4765	10565
4005-4	40	5	3.175	58	M56X1.5P	19	59	M8	6	T4	2174	7250
4010-4	40	10	6.35	65	M60X1.5P	27	102	M8	12	T4	5331	13636
5010-4	50	10	6.35	78	M72X1.5P	29	104	M8	12	T4	5986	17502

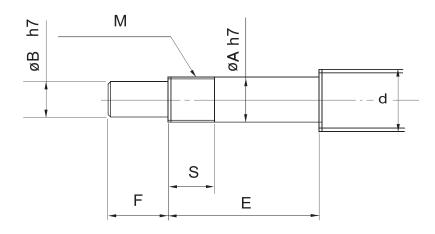
Note: A without wipers

Unit : mm

Model No.					Dimer	isions				
woder no.	d	I	Da	D	A	В	L	n	Ca(Kgf)	Coa(kgf)
12H2-1.5	12	12.7	2.381	29.5	M25x1.5P	12	50	A1	391	711
16H5-3.5	16	5.08	3.175	25.4	15/16"x16un	12.7	43.43	C1	1328	2805

Other components

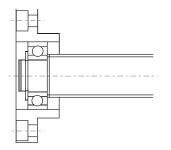
Self-lubricated Linear Bearing

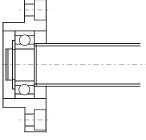

Ball Screw

Support Unit

Support Unit

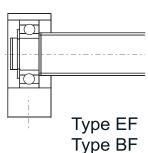
7.1 Recommended Shaft End Shape(Fixed side) - BK.FK.EK


Model No.	Ball Screw shaft OD	Shaft Support Portion OD				Metric screw thre	ead
BK (Type BK)	d	А	В	E	F	М	S
BK 10	12/14/15	10	8	36	15	M10X1	12
BK 12	14/15/16	12	10	36	15	M12X1	12
BK 15	18/20	15	12	40	20	M15X1	12
BK 17	20/25	17	15	53	23	M17X1	17
BK 20	25/28	20	17	53	25	M20X1	15
BK 25	32/36	25	20	66	30	M25X1.5	20
BK 30	36/40	30	25	73	38	M30X1.5	25
BK 35	45	35	30	82	45	M35X1.5	26
BK 40	50	40	35	94	50	M40X1.5	30


Mode	l No.	Ball Screw shaft OD	Shaft Support Portion OD				Metric screw thre	ead
Type FK	Type EK	d	A	В	E	F	М	S
FK 06	EK 06	8	6	4	28	8	M6X0.75	8
FK 08	EK 08	10/12	8	6	32	9	M8X1	10
FK 10	EK 10	12/14/15	10	8	36	15	M10X1	12
FK 12	EK 12	14/15/16	12	10	36	15	M12X1	12
FK 15	EK 15	18/20	15	12	48	20	M15X1	13
FK 17	-	20/25	17	15	59	23	M17X1	17
FK 20	EK 20	25/28/30	20	17	64	25	M20X1	16
FK 25	-	30/32/36	25	20	76	30	M25X1.5	20
FK 30	-	36/40	30	25	73	38	M30X1.5	25

7.2

Recommended Shaft End Shape(Floated side) - FF.EF.BF

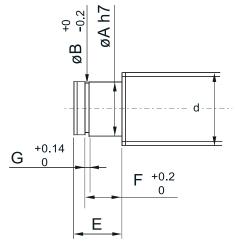


Type FF

Ball Screw

.

Standard


Ball Caged

Miniature

Cam Roller

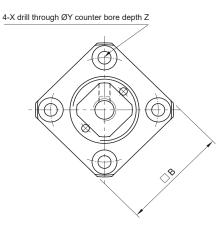
Round Shaft

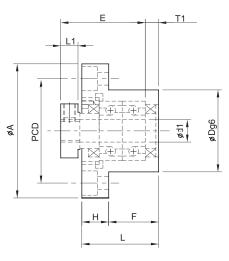
Linear Guide

Unit : mm

Support Unit Ball Screw
Ball Screw

Self-Iubricated Linear Bearing


Shaft Support Portion OD Model No. Snap-ring Groove shaft OD Type: FF/EF/BF В F G Е d А 8 6 9 5.7 0.8 FF/EF06 6.8 10 5.7 0.8 EF 08 6 9 6.8 FF/EF/BF10 12/14/15 8 10 7.6 7.9 0.9 14/15/16 FF/EF/BF12 10 11 9.6 9.15 1.15 1.15 18/20 10.15 FF/EF/BF15 15 13 14.3 13.15 FF/BF17 20/25 17 16 16.2 1.15 ★ FF/EF/BF20 25/28/30 20 19 (16) 19 15.35(13.35) 1.35 **FF/BF 25** 30/32/36 25 20 23.9 16.35 1.35 17.75 **FF/BF 30** 36/40 30 21 28.6 1.75 **BF 35** 22 18.75 40/45 35 33 1.75 BF 40 40 23 38 19.95 1.95 50


Note: () shows the dimension of BF20 which is different from those of type FF20 and EF20. When placing an order, always specify the model number of the Support Unit to be used.

129

7.3 FK (Fixed Side)

Model No.	d1	L	н	F	E	Dg6	А	PCD	В	L1	T1	L2	T2	Х	Y	Z	М	Т
FK 5	5	16.5	6	10.5	18.5	20	34	26	26	5.5	3.5	5	3	3.4	6.5	4	M3	11
FK 6	6	20	7	13	22	22	36	28	28	5.5	3.5	6.5	4.5	3.4	6.5	4	M3	12
FK 8	8	23	9	14	26	28	43	35	35	7	4	8	5	3.4	6.5	4	M3	14
FK 10	10	27	10	17	29.5	34	52	42	42	7.5	5	8.5	6	4.5	8	4	M3	16
FK 12	12	27	10	17	29.5	36	54	44	44	7.5	5	8.5	6	4.5	8	4	M4	19
FK 15	15	32	15	17	36	40	63	50	52	10	6	12	8	5.5	9.5	6	M4	22
FK 17	17	45	22	23	47	50	77	62	61	11	9	14	12	6.6	11	10	M4	24
FK 20	20	52	22	30	50	57	85	70	68	8	10	12	14	6.6	11	10	M4	30
FK 25	25	57	27	30	59	63	98	80	79	13	10	20	17	9	15	13	M5	35
FK 30	30	62	30	32	61	75	117	95	93	11	12	17	18	11	17.5	15	M6	40

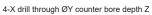
Standard

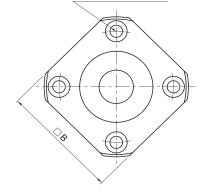
Miniature Ball Caged

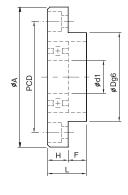
Cam Roller

Round Shaft

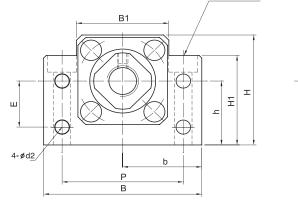
Ball Screw


Support Unit


Ball Screw


Linear Guide

7.4 FF (Floated side)


Model No.	d1	L	н	F	Dg6	А	PCD	В	Х	Y	Z
FF 06	6	10	64		22	36	28	28	3.46	.5	4
FF 10	8	12	7	5	28	43	35	35	3.4	6.5	4
FF 12	10	15	7	8	34	52	42	42	4.5	8	4
FF 15	15	17	9	8	40	63	50	52	5.5	9.5	5.5
FF 17	17	20	11	9	50	77	62	61	6.6	11	6.5
FF 20	20	20	11	9	57	85	70	68	6.6	11	6.5
FF 25	25	24	14	10	63	98	80	79	9	14	8.5
FF 30	30	27	18	9	75	117	95	93	11	17	11

Self-Iubricated Linear Bearing

7.5 BK (Fixed Side)

4-X drill through ØY counter bore depth Z

-		L2		-	L3		
	ι D	<u>_</u>			X		
===:		+				ød1	_
		F.	≩;r∔-(; =_t; _	÷	X. -		
	L1	-	_ C L	1	C2		

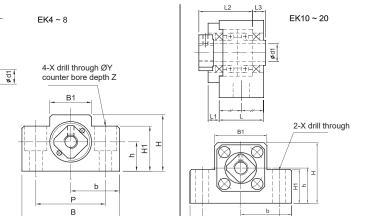
Model No.	d1	L	L1	L2	L3	C1	C2	В	Н	$b^{\pm 0.02}$	$h^{\pm 0.02}$	B1	H1	Е	Р	d2	Х	Y	Z	М	Т
BK 10	10	25	5	29.5	5	13	6	60	39	30	22	34	32.5	15	46	5.5	6.6	10.8	5	M4	16
BK 12	12	25	5	29.5	5	13	6	60	43	30	25	34	32.5	18	46	5.5	6.6	10.8	1.5	M4	19
BK 15	15	27	6	32	6	15	6	70	48	35	28	40	38	18	54	5.5	6.6	11	6.5	М3	22
BK 17	17	35	9	44	7	19	8	86	64	43	39	50	55	28	68	6.6	9	14	8.5	M4	24
BK 20	20	35	8	43	8	19	8	88	60	44	34	52	50	22	70	6.6	9	14	8.5	M4	30
BK 25	25	42	12	54	9	22	10	106	80	53	48	64	70	33	85	9	11	17	11	M5	35
BK 30	30	45	14	61	9	23	11	128	89	64	51	76	78	33	102	11	14	20	13	M6	40
BK 35	35	50	14	67	12	26	12	140	96	70	52	88	79	35	114	11	14	20	13	M8	50
BK 40	40	61	18	76	15	33	14	160	110	80	60	100	90	37	130	14	18	26	17.5	M8	50

Standard

Miniature Ball Caged

Cam Roller

Round Shaft


Ball Screw

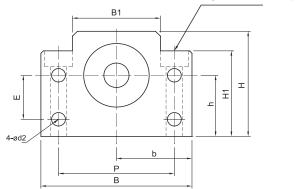
Support Unit

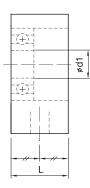
Linear Guide

7.6 EK (Fixed Side)

EK6,8

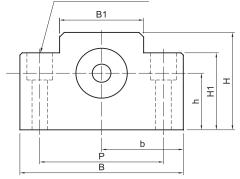
Model No.	d1	L	L1	L2	L3	В	н	$b^{\pm 0.02}$	$h^{\pm 0.02}$	B1	H1	Р	Х	Y	Z	М	Т
EK 05	5	16.5	5.5	18.5	3.5	36	21	18	11	20	8	28	4.5	_	_	M3	11
EK 06	6	20	5.5	22	3.5	42	25	21	13	18	20	30	5.5	9.5	11	M3	12
EK 08	8	23	7	26	4	52	32	26	17	25	26	38	6.6	11	12	M3	14
EK 10	10	24	6	29.5	6	70	43	35	25	36	24	52	9	-	-	M3	16
EK 12	12	24	6	29.5	6	70	43	35	25	36	24	52	9	-	-	M4	19
EK 15	15	25	6	36	5	80	49	40	30	41	25	60	11	-	-	M4	22
EK 20	20	42	10	50	10	95	58	47.5	30	56	25	75	11	_	-	M4	30

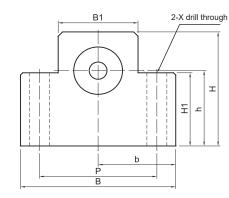

Ball Screw


Self-Iubricated Linear Bearing

7.7 BF (Floated Side)

4-X drill through ØY counter bore depth Z


Model No.	d1	L	В	н	$b^{\pm 0.02}$	$h^{\pm 0.02}$	B1	H1	E	Р	d2	X	Y	Z
BF 10	8	20	60	39	30	22	34	32.5	15	46	5.5	6.6	10.8	5
BF 12	10	20	60	43	30	25	34	32.5	18	46	5.5	6.6	10.8	1.5
BF 15	15	20	70	48	35	28	40	38	18	54	5.5	6.6	11	6.5
BF 17	17	23	86	64	43	39	50	55	28	68	6.6	9	14	8.5
BF 20	20	26	88	60	44	34	52	50	22	70	6.6	9	14	8.5
BF 25	25	30	106	80	53	48	64	70	33	85	9	11	17	11
BF 30	30	32	128	89	64	51	76	78	33	102	11	14	20	13
BF 35	35	32	140	96	70	52	88	79	35	114	11	14	20	13
BF 40	40	37	160	110	80	60	100	90	37	130	14	18	26	17.5


7.8 EF (Floated side)

4-X drill through ØY counter bore depth Z

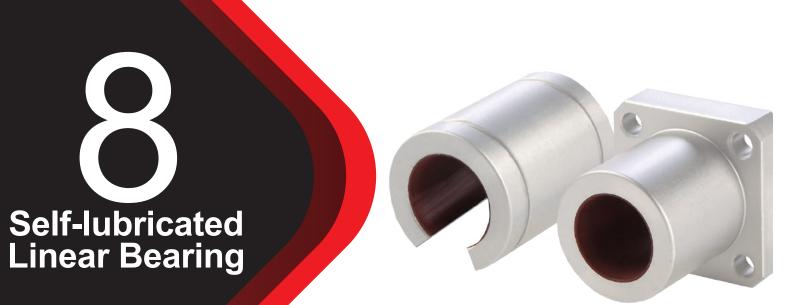
EF10 ~ 20

											Un	it : mm
Model No.	d1	L	В	Н	$b^{\pm 0.02}$	$h^{\pm 0.02}$	B1	H1	Р	Х	Y	Z
EF 06	6	12	42	25	21	13	18	20	30	5.5	9.5	11
EF 08	6	14	52	32	26	17	25	26	38	6.6	11	12
EF 10	8	20	70	43	35	25	36	24	52	9	-	-
EF 12	10	20	70	43	35	25	36	24	52	9	-	-
EF 15	15	20	80	49	40	30	41	25	60	9	-	-
EF 20	20	26	95	58	47.5	30	56	25	75	11	-	-

Ξ÷Σ

ι÷τ

ød1


Round Shaft

Ball Screw

Support Unit

Self-Iubricated Linear Bearing

Standard

8.1 Characteristics

(1) Excellent Wear Resistance

Unlike linear ball bearing that requires running on high hardness heat treated shaft (SUJ2), Self-Lubricated Linear Bearing can be used with Hard Chrome Plated Shaft (S45C). Under correct use, the life expectancy is much higher than linear ball bearings.

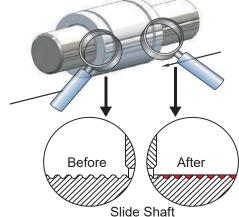
(3) Multi-Functions

Suitable for either linear, rotary, or combination of both motions.

(5) Self-Lubricating

Lubrications are not required; however, the use of adequate lubrications can minimize frictions and wear

(7) Chemical and corrosion resistance


Great resistance to corrosion allows the bearing to be operating or submerging in alcohol, gasoline, water, oil and stand up to harsh environment.

(9) Low friction

Low coefficient of friction eliminates oscillating, which is suitable for continuous and intermittent motions.

(11) Quiet operation

Quieter operation over linear ball bearing at any operating speed.

(2) Interchangeability

Full range of ABBA Self-Lubricated Linear Bearings product line includes Standard, Thin Profile, Profile, and Flanged Type. All Self-Lubricated bearings are interchangeable with our Linear Ball Bearings products.

(4) High impact capability

Great capabilities of dampening high impacts, vibrations, and uneven loads while keeping the components from damaging.

(6) High load capacity

ABBA Self-Lubricating Linear Bearings can withstand average 3~4 times load capacity over linear ball bearings.

(8) Reliable

Reliable bearing dimensions due to the liner will not expand to water or oil unlike general industrial use plastic. Thermal expansion effect is also minimal to the bearing, and will not cause binding to the shaft.

(10) Substitutability

In the case of the shaft had been scored by linear ball bearing, self-lubricated linear bearing can be installed to the damaged shaft after slight sanding the shaft by sand paper as emergency repair.

(12) Wide range of applications

Produces minimum particulates, which is suitable for vacuum and clean rooms applications. Applicable applications include Automation Machines, Transfer Equipment, Vice, Robotic Arms, Robots, Positioning Device, Automotive, Office Equipment, Semi-Conductor Manufacturing, Bio-Chemical Plant, Food Processing Plant, and Fabric Manufacturing related applications.

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

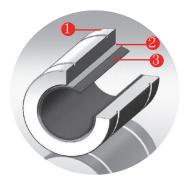
Support Unit

Ball Screw

Linear Guide

8.2 / Structure

1. Anodized aluminum, 6060 T6


2.Water-proof Bonding Agent

3.Frelon thickness: 0.5mm

The composition of super wear-resistant sliding plate is

Teflon + Glass fiber + Metal powder + Special formula, which are imported high-tech materials, generally used in the wear-resistant rails of the million-level precision machine tool, it can slide uppon high load for a long time without abrasion. Its wear-resistant function is better than General DU bearings.

8.3 / Size selection

Use the formula below to calculate Maximum PV Value (Load x Velocity), then multiply its value by Safety Factor. Cross reference the value to dimension chart in our catalogue page to select bearing size. The size of bearing is proportional to the load and Velocity.

Formula

- Maximum load = L / N x F
- Load x Velocity = L / N x V x F
- Axial Driving Force = µ x L
- L : Total Load Capacity (kgf)
- N : Number of Bearings
- F : Safety Factor 2~3
- V : Velocity (m/sec)
- μ : Fricition Factor : 0.15~0.25

Example 1

Assuming a sliding platform has a load of 100kg, uses 4 bearings, and velocity is 0.6 m/sec. Caculation of bearing size and required axial driving force is shown below.

Where

- L = 100 kgf, N = 4, assume
- F = 2.5, μ = 0.2, V=0.6 m/sec
- Maximum load = L / N x F = 100 / 4 x 2.5 = 62.5 kgf
- Load x Velocity = L / N x V x F = 100 / 4 x 0.6 x 2.5
- = 37.5 kgf · m/sec
- Required Driving force = $\mu x L = 0.2 x 100 = 20 \text{ kgf}$

Cross reference the results to dimension chart, known TM 25 Bearing (Max. Load = 1000 kgf, Max. Load x Velocity = 52.8 kgf \cdot m/sec) is capable of this application.

Example 2

Assuming all values remains unchanged, except velocity increases to 1.0 m/sec. Calculation of bearing size is shown below.

Where

• Load x Velocity = L / N x V x F = 100 / 4 x 1.0 x 2.5 = 62.5 kgf · m/sec

According to the dimension chart, TM30 bearing (Max \cdot Load x Velocity =68.7 kgf \cdot m/sec is capable of this application.

8.4 / Life calculation

Bearing's Life Calculation is based on Maximum allowable amount of wear. Once this value has been decided, bearing's life can be calculated by using the formula below. Under constant load and velocity, bearing's life is proportional to bearing inner diameter.

Formula

 $T = W \swarrow (K \times P \times V)$ $P = L \swarrow (A \times I \times N)$

- T : Sliding time (hour)
- W : Amount of Wear (mm)
- K : Wearing rate : 1×10^{-7} A : Bearing inner diameter (cm)
 - I : Bearing length (cm)
- P : Pressure (kgf/cm²)

V: Velocity (m/min)

L : Total load (kgf) N : Number of Bearings

Example 3

To calculate the life of TM25 bearing from example 1.

Where

W = 0.05mm, K = 1 x 10^{-7} , A = 2.5

From dimension chart known

```
I = 5.9 , L=100 kgf
V = 0.6 \times 60 = 36 m / min
P = L / (A \times I \times N)
= 100 / (2.5 \times 5.9 \times 4)
= 1.69 kgf / cm^{2}
T = W / (K \times P \times V)
= 0.05(1 \times 10^{-7} \times 1.69 \times 36)
= 8218 hours
```

Usage per day = 6 x 300 x 8 / 3600 = 4 hours Total life time = 8218 / 4 = 2054 days

Note:

Allowable amount of wear is proportional to bearing's life. For example, if allowable amout of wear = 0.01mm, Bearing's life = 4108 days.

Ball Caged

Miniature

Cam Roller

Round Shaft

Ball Screw

Support Unit

Ball Screw

Linear Guide

8.5 Cantilevered loads

Example

When distance X equals to 100mm, minimum bearing separation Y must be at least 50mm.

Caution

Binding of the bearing can occur when the ratio exceeds 2:1
Adequate lubrications will help reduce friction and helps increase the 2:1 ratio

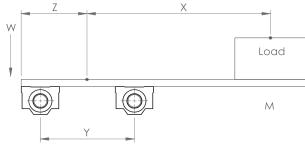
In the case of holding more than 2:1 ratio, method of using counter weight could be use to prevent binding. Use the formula shown below.

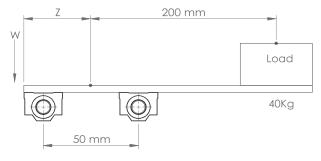
Formula

 $M \times X = W \times Z$

 $\label{eq:mass_state} \begin{array}{l} M : Mass of load \\ X : Distance from load to the shaft \\ W : Mass of counter weight \\ Z : 1.5 \ x \ (Y) \end{array}$

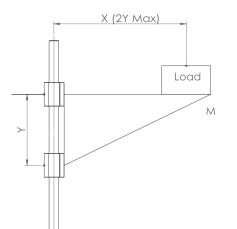
Example

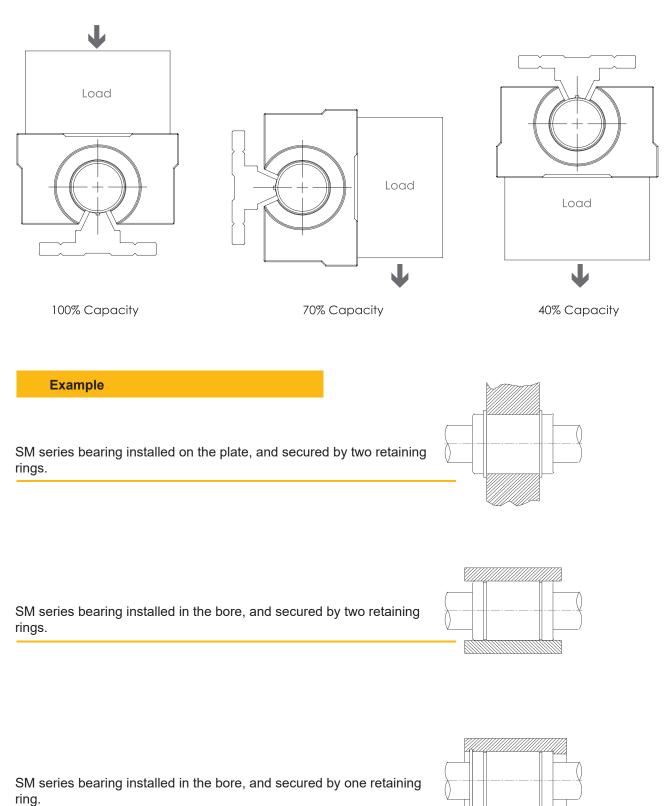

 $40 \times 200 = W \times Z(1.5 \times 50 = 75)$ W = 40 × 200 / 75 = 106.7Kg


When W is calculated, load per bearing can be calculated. M + W / # of bearings

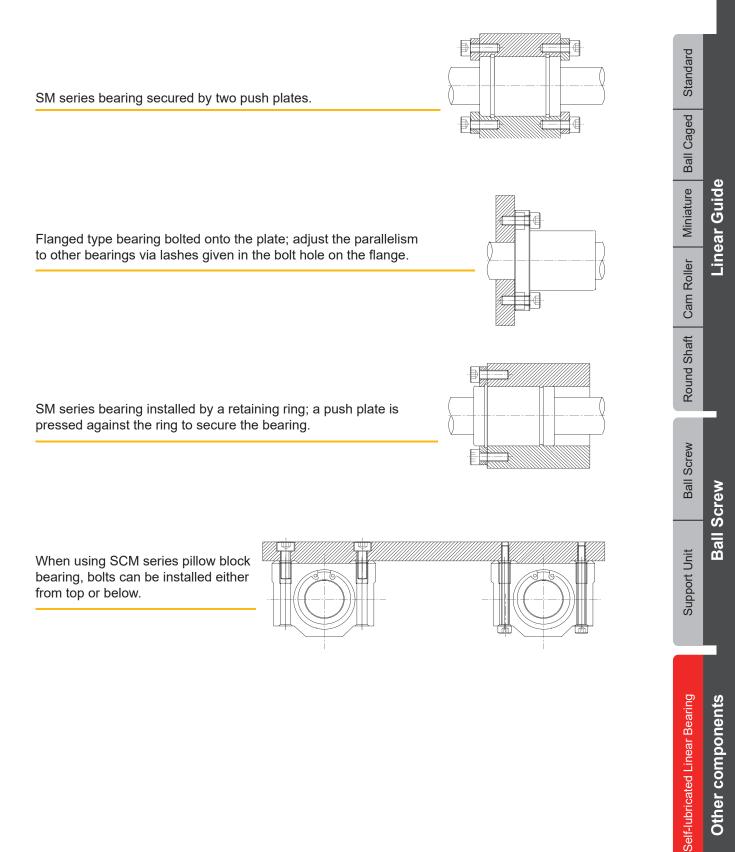
Example

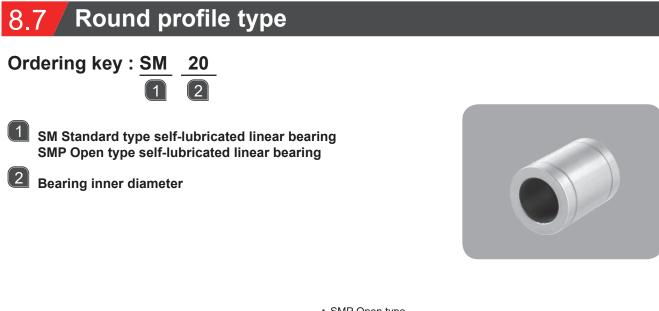
40 + 106.7 / 4 = 36.7 Kg / Bearing


If the ratio of the cantilever installation is greater than 2: 1, a counterweight method can be used to avoid bearing binding.

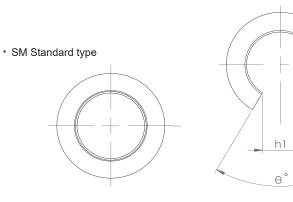

Load 承載物

X (2Y Max)




8.6 Open type bearing mounting configurations

Load capacities on open type self-lubricated linear bearings will depending on their mounting configurations.

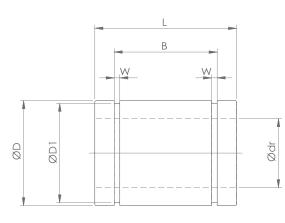


SMP Open type

Unit : mm

Mode	el No.	Inner Dia.			Dime	ensions			
Standard type	Open type	Ødr (F8)	ØD (h6)	L	В	W	ØD1	h1	θ°
SM 6	-	6	12	19	13.5	1.15	11.5	_	_
SM 8	_	8	15	24	17.5	1.15	14.3	—	-
SM 10	SMP 10	10	19	29	22.0	1.35	18.0	6.8	80 °
SM 12	SMP 12	12	21	30	23.0	1.35	20.0	8	80 °
SM 13	SMP 13	13	23	32	23.0	1.35	22.9	9	80 °
SM 16	SMP 16	16	28	37	26.5	1.65	26.6	11	80 °
SM 20	SMP 20	20	32	42	30.5	1.65	30.3	11	60 °
SM 25	SMP 25	25	40	59	41.0	1.90	38.0	12	50 °
SM 30	SMP 30	30	45	64	44.5	1.90	42.5	15	50 °
SM 35	SMP 35	35	52	70	49.5	2.20	49.0	17	50 °
SM 40	SMP 40	40	60	80	60.5	2.20	57.0	20	50 °
SM 50	SMP 50	50	80	100	74.0	2.70	76.5	25	50 °
SM 60	SMP 60	60	90	110	85.0	3.15	86.5	30	50 °

Cam Roller Miniature Ball Caged


Round Shaft

Ball Screw

Support Unit

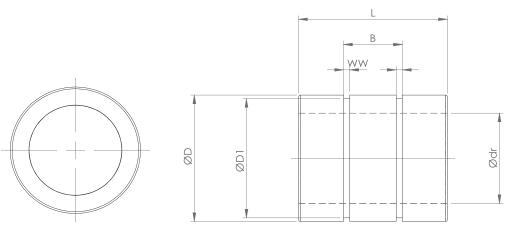
Linear Guide

Mod	el No.	Max. Static load	Max. PV	Max. Speed	Weight (g)	
Standard type	Open type	(kgf)	(kgf * m/sec)	(m / sec)	SM	SMP
SM 6	-	80	4.1	2	4.4	_
SM 8	-	130	6.9	2	8.3	_
SM 10	SMP 10	200	10.4	2	16.2	12.5
SM 12	SMP 12	250	12.9	2	19	13.9
SM 13	SMP 13	290	14.9	2	24.6	17.9
SM 16	SMP 16	410	21.2	2	41.7	30.0
SM 20	SMP 20	580	30.1	2	56	43.4
SM 25	SMP 25	1000	52.8	2	122.8	99.2
SM 30	SMP 30	1300	68.7	2	153.7	123.5
SM 35	SMP 35	1700	87.7	2	221	177.8
SM 40	SMP 40	2200	115.0	2	341.6	275.6
SM 50	SMP 50	3500	179.0	2	832.7	679.8
SM 60	SMP 60	4600	236.0	2	1057	860.8

Ball Screw

8.8 SMT Thin profile type

Ordering key : SMT 20



1 SMT thin profile self-lubricated linear bearing

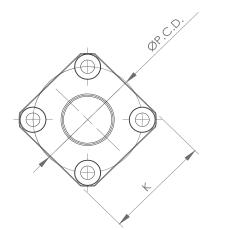
2 Bearing inner diameter

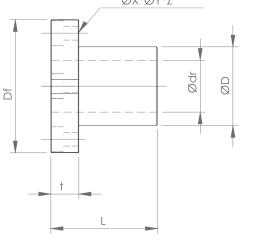
Unit : mm

Model No.	Inner Dia.		Dim	iensio	ns		Max. Static load	Max. PV	Max Speed	Weight
	Ødr (F8)	ØD (h6)	L	В	W	ØD1	(kgf)	(kgf * m/sec)	(m / sec)	(g)
SMT10	10	17	26	8.3	1.15	16.20	180	9.3	2	10.49
SMT12	12	19	28	8.7	1.35	18 <u>.</u> 00	230	12	2	12.97
SMT16	16	24	30	10 <u>.</u> 7	1.35	22 <u>.</u> 90	330	17.2	2	20.49
SMT20	20	28	30	13 <u>.</u> 3	1 <u>.</u> 65	26.60	420	21.5	2	24.59
SMT25	25	35	40	15 <u>.</u> 8	1.65	33.00	700	35.8	2	51.23
SMT30	30	40	50	18 <u>.</u> 8	1.90	38.00	1050	53.7	2	74.71
SMT40	40	52	60	24.4	2.20	49 <u>.</u> 00	1600	85.9	2	141.4
SMT50	50	62	70	29.4	2.20	59.00	2400	125	2	200 <u>.</u> 8

8.9 / SMK Square flange type

Ordering key : SMK 20




SMK Square flange self-lubricated bearing

2 Bearing inner diameter

ØX*ØY*Z

Model No.	Inner Dia.	Dimensions									
	Ødr (F8)	ØD (h6)	L	ØDf	K	t	P.C.D.	ØX	ØY	Z	
SMK 10	10	19	29	40	30	9	29	4.5	7.5	4.1	
SMK 12	12	21	30	42	32	9	32	4.5	7.5	4.1	
SMK 13	13	23	32	43	34	9	33	4.5	7 <u>.</u> 5	4.1	
SMK 16	16	28	37	48	37	9	38	4 <u>.</u> 5	7 <u>.</u> 5	41	
SMK 20	20	32	42	54	42	11	43	5.5	9.0	5.1	
SMK 25	25	40	59	62	50	11	51	5.5	9 <u>.</u> 0	5 <u>.</u> 1	
SMK 30	30	45	64	74	58	14	60	6 <u>.</u> 6	11 <u>.</u> 0	6.1	
SMK 35	35	52	70	82	64	14	67	6.6	11.0	6.1	
SMK 40	40	60	80	96	75	18	78	9 <u>.</u> 0	14 <u>.</u> 0	8 <u>.</u> 1	
SMK 50	50	80	100	116	92	20	98	9.0	14 <u>.</u> 0	8.1	

Model No.	Max. Static load	Max. PV	Max. Speed	Weight
	(kgf)	(kgf * m/sec)	(m / sec)	(g)
SMK 10	200	10.4	2	33
SMK 12	250	12 <u>.</u> 9	2	35
SMK 13	290	14 <u>.</u> 9	2	38
SMK 16	410	21 <u>.</u> 2	2	56
SMK 20	580	30 <u>.</u> 1	2	75
SMK 25	1000	52.8	2	149
SMK 30	1300	68.7	2	202
SMK 35	1700	87 <u>.</u> 7	2	296
SMK 40	2200	115.0	2	450
SMK 50	3500	179.0	2	1000

Standard

Round Shaft

Ball Screw

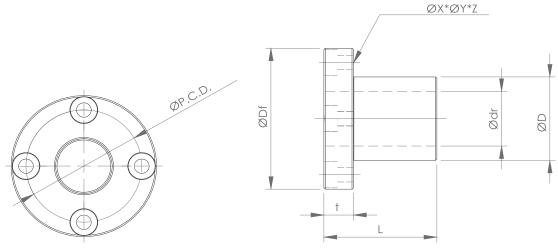
Support Unit

Unit : mm

Self-lubricated Linear Bearing

8.10 SMF Round flange type

Ordering key : SMF 20



1 SMF Round flange self-lubricated bearing

2 Bearing inner diameter

Unit : mm

Model No.	Inner Dia.	Dimensions									
	Ødr (F8)	ØD (h6)	L	ØDf	t	P.C.D.	ØX	ØY	Z		
SMF 6	6	12	19	28	8	20	3.5	6.0	3.1		
SMF 8	8	15	24	32	8	24	3.5	6.0	3.1		
SMF 10	10	19	29	40	9	29	4.5	7.5	4.1		
SMF 12	12	21	30	42	9	32	4.5	7.5	4.1		
SMF 16	16	28	37	48	9	38	4.5	7.5	4.1		
SMF 20	20	32	42	54	11	43	5.5	9.0	5.1		
SMF 25	25	40	59	62	11	51	5.5	9.0	5.1		
SMF 30	30	45	64	74	14	60	6.6	11.0	6.1		

Model No.	Max. Static load	Max. PV	Max. Speed	Weight
	(kgf)	(kgf * m/sec)	(m / sec)	(g)
SMF 6	80	4.1	2	12
SMF 8	130	6.9	2	14
SMF 10	200	10.4	2	36
SMF 12	250	12.9	2	38
SMF 16	410	21.2	2	60
SMF 20	580	30.1	2	80
SMF 25	1000	52.8	2	160
SMF 30	1300	68.7	2	212

Ball Caged

Miniature

Cam Roller

Round Shaft

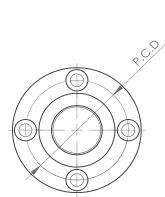
Ball Screw

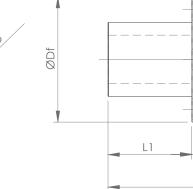
Support Unit

Linear Guide

8.11/SMFD Center flange type

Ordering key : SMFD 20





SMFD Center flange self-lubricated bearing

2 Bearing inner diameter

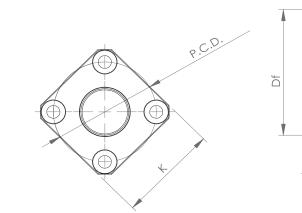
Unit : mm

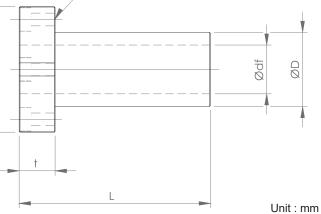
Model No.	Inner Dia.				Dimen	sions				
Woder No.	Ødr (F8)	ØD (h6)	L	L1	ØDf	t	P.C.D	ØX	ØY	Z
SMFD 16	16	28	70	28.5	48	13	38	4.5	7.5	4.1
SMFD 20	20	32	80	32.5	54	15	43	5.5	9.0	5.1
SMFD 25	25	40	112	48.5	62	15	51	5.5	9.0	5.1
SMFD 30	30	45	123	51.5	74	20	60	6.6	11.0	6.1

Model No.	Max. Static load	Max. PV	Max. Speed	Weight
Model No.	(kgf)	(kgf * m/sec)	(m / sec)	(g)
SMFD 16	780	38.1	2	113
SMFD 20	1100	54.2	2	150
SMFD 25	1900	95	2	303
SMFD 30	2470	123.7	2	407

8.12 SMK-L Long square flange type

Ordering key : SMK-L 20




1 SMK-L Long type round flange self-lubricated bearing

2 Bearing inner diameter

ØX*ØY*Z

Model No.	Inner Dia.	Dimensions									
	Ødr (F8)	ØD (h6)	L	ØDf	K	t	P.C.D.	ØX	ØY	Z	
SMK10L	10	19	55	40	30	10	29	4.5	7.5	4.1	
SMK12L	12	21	57	42	32	13	32	4.5	7.5	4.1	
SMK16L	16	28	70	48	37	13	38	4.5	7.5	4.1	
SMK20L	20	32	80	54	42	15	43	5.5	9.0	5.1	
SMK25L	25	40	112	62	50	15	51	5.5	9.0	5.1	
SMK30L	30	45	123	74	58	20	60	6.6	11.0	6.1	
SMK35L	35	52	135	82	64	20	67	6.6	11.0	6.1	
SMK40L	40	60	151	96	75	22	78	9.0	14.0	8.1	
Model No.	Max. Sta				(. PV		Max. S	·		ight	
SMK10L	(kg1 380		(kgf * m/sec)				(m/sec)		(g)		
SMK10L SMK12L	475		18.7				2		62		
SMK16L	780			23.2 38.1				2		67 106	
SMK10L SMK20L	110									43	
			54.2 95.0				2				
SMK25L	190	-								33	
SMK30L	247		123.7				2		388		
SMK35L SMK40L	323 418	-	157.9				2		570 849		
31/15401			207.0								

Ball Caged

Miniature

Cam Roller

Round Shaft

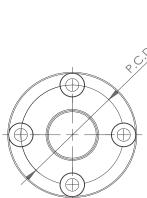
Ball Screw

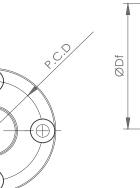
Support Unit

Linear Guide

8.13 SMF-L Long round flange type

Ordering key : SMF-L 20






SMF-L Long type round flange self-lubricated bearing

2 Bearing inner diameter

Unit : mm

Model No.	Inner Dia.	Dimensions								
	Ødr (F8)	ØD (h6)	L	ØDf	t	P.C.D.	ØX	ØY	Z	
SMF12L	12	21	57	42	13	32	4.5	7.5	4.1	
SMF16L	16	28	70	48	13	38	4.5	7.5	4.1	
SMF20L	20	32	80	54	15	43	5.5	9.0	5.1	
SMF25L	25	40	112	62	15	51	5.5	9.0	5.1	
SMF30L	30	45	123	74	20	60	6.6	11.0	6.1	

Model No.	Max. Static load	Max. PV	Max. Speed	Weight	
	(kgf)	(kgf * m/sec)	(m / sec)	(g)	
SMF12L	475	23.2	2	72	
SMF16L	780	38.1	2	113	
SMF20L	1100	54.2	2	150	
SMF25L	1900	95.0	2	303	
SMF30L	2470	123.7	2	407	

Ball Screw

Standard end cap(BRC with lubricant reservoir)					
	Old item name	New item name			
BR15	BRH15A	BRC15-A0			
	BRH15B	BRC15-R0			
	BRS15B	BRC15-U0			
	BRS15BS	BRC15-SU			
	BRH20A	BRC20-A0			
	BRH20AL	BRC20-LA			
BR20	BRH20B	BRC20-R0			
20	BRH20BL	BRC20-LR			
	BRS20B	BRC20-U0			
	BRS20BS	BRC20-SU			
	BRH25A	BRC25-A0			
	BRH25AL	BRC25-LA			
BR25	BRH25B	BRC25-R0			
25	BRH25BL	BRC25-LR			
	BRS25B	BRC25-U0			
	BRS25BS	BRC25-SU			
	BRH30A	BRC30-A0			
BF	BRH30AL	BRC30-LA			
	BRH30B	BRC30-R0			
BR30	BRH30BL	BRC30-LR			
	BRS30B	BRC30-U0			
	BRS30BS	BRC30-SU			

BR Series Model Code Transition

Rail					
Rail	Old item name	New item name			
	BR	BRR			

Short end cap(BRD without lubricant reservoir)					
	Old item name	New item name			
BR15	BRH15A-S	BRD15-A0			
	BRH15B-S	BRD15-R0			
	BRS15B-S	BRD15-U0			
	BRS15BS-S	BRD15-SU			
	BRH20A-S	BRD20-A0			
	BRH20AL-S	BRD20-LA			
BR20	BRH20B-S	BRD20-R0			
	BRH20BL-S	BRD20-LR			
	BRS20B-S	BRD20-U0			
	BRS20BS-S	BRD20-SU			
	BRH25A-S	BRD25-A0			
	BRH25AL-S	BRD25-LA			
BR25	BRH25B-S	BRD25-R0			
25	BRH25BL-S	BRD25-LR			
	BRS25B-S	BRD25-U0			
	BRS25BS-S	BRD25-SU			
	BRH30A-S	BRD30-A0			
	BRH30AL-S	BRD30-LA			
BR3(BRH30B-S	BRD30-R0			
30	BRH30BL-S	BRD30-LR			
	BRS30B-S	BRD30-U0			
	BRS30BS-S	BRD30-SU			
	BRH35A-S	BRD35-A0			
	BRH35AL-S	BRD35-LA			
BR35	BRH35B-S	BRD35-R0			
	BRH35BL-S	BRD35-LR			
	BRS35B-S	BRD35-U0			
	BRS35BS-S	BRD35-SU			
B	BRH45A-S	BRD45-A0			
	BRH45AL-S	BRD45-LA			
BR45	BRH45B-S	BRD45-R0			
- 01	BRH45BL-S	BRD45-LR			
	BRS45B-S	BRD45-U0			

Appendix 2

Examples of Ball Srews accuracy classes for different uses

Application		Accuracy grade							
		CO	C1	C2	C3	C5	C7	C10	
-		Х	0	0	0	0	0	0	
	Lathe	Z				0	0	0	
	Milling Machine	XY		0	0	0	0	0	
	Boring Machine	Z			0	0	0	0	
	Machine Center	XY		0	0	0	0		
		Ζ			0	0	0		
	Jig Borer	Y	\bigcirc	0					
ols		Z	\bigcirc	$\overline{\mathbf{O}}$					
P	Drilling Machine	XY				0	\bigcirc	0	
ine		Z					0	0	
ach	Grinding Machine	Х	\bigcirc	0	0	0	$\overline{\mathbf{O}}$	Õ	
NC Machine Tools		Z		0		0		0	
N	Electro-discharge	XY		\bigcirc	0	0	\bigcirc	Õ	
	Machine (EDM)	(Z)			\bigcirc	\bigcirc	$\overline{\mathbf{O}}$	\bigcirc	
		XY		\bigcirc	\bigcirc	0			
	Wire Cut (EDM)	UV					0	0	
	Punching Press	XY				\bigcirc			
	Laser Cutting	XY							
	Machine	Z							
	Wood Working Mac							\bigcirc	\bigcirc
Machin	es of general and specia				\bigcirc				
Maorini	Explosure equipme		\bigcirc	0					
tor	Chemical treatme					0	\bigcirc	0	\bigcirc
duc	Wire Bonder			0	\bigcirc				
Semiconductor Machines	Prober		\bigcirc						
mic Ma	Inserter						0	0	
Sel	PCB Driller	_		\bigcirc					
	PCB Driller	As' sy							
<u></u>	Orthogonal type	Others							\cap
ustrial bots		As' sy			\bigcirc				
Indu: Rob	Multi-joints type	Others						0	
ĒĽ		Outers							
Scara type				0	\cup		_	\cap	
Machines of steel molding									
Injection Molding Machines							\cup	\cup	
Three-dimensional Measuring Machines		\bigcirc	0	\bigcirc					
Business Machines		\frown				0	0	0	
Pattern Image Machines		0	0						
Nuclear	Rod control					0	0	0	
Mechnaical Snubber							\bigcirc	\bigcirc	
Aircraft					\bigcirc	$ $ \bigcirc			

ABBA

An Ewellix company

ABBA Linear Tech Co., Ltd.

No.123, Sec. 1, Yuemei Rd., Zhongli Dist., Taoyuan City 320, Taiwan Tel +886-3-4988326 Fax +886-3-4988279 Website abbalinear.com Email abba@ewellix.com

2022.9